Voir la notice du chapitre de livre
@article{TIMM_2010_16_1_a16,
author = {T. F. Filippova},
title = {Differential equations of ellipsoidal estimates for reachable sets of a~nonlinear dynamical control system},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {223--232},
year = {2010},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a16/}
}
TY - JOUR AU - T. F. Filippova TI - Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 223 EP - 232 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a16/ LA - ru ID - TIMM_2010_16_1_a16 ER -
%0 Journal Article %A T. F. Filippova %T Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system %J Trudy Instituta matematiki i mehaniki %D 2010 %P 223-232 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a16/ %G ru %F TIMM_2010_16_1_a16
T. F. Filippova. Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 223-232. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a16/
[1] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR
[2] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidiffepentsialnoe ischislenie, Nauka, M., 1990, 431 pp. | MR
[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[4] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl
[5] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR
[6] Filippova T. F., “Postroenie mnogoznachnykh otsenok mnozhestv dostizhimosti nekotorykh nelineinykh dinamicheskikh sistem s impulsnym upravleniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 262–269
[7] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 320 pp. | MR
[8] Aubin J. P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl
[9] Dontchev A. L., Farkhi E. M., “Error estimates for discretized differential inclusions”, Computing, 41:4 (1989), 349–358 | DOI | MR | Zbl
[10] Dontchev A. L., Lempio F., “Difference methods for differential inclusions: a survey”, SIAM Rev., 34:2 (1992), 263–294 | DOI | MR | Zbl
[11] Filippova T. F., “Sensitivity problems for impulsive differential inclusions”, Proc. of the 6th WSEAS International conference on applied mathematics, Corfu Island, 2004, 1–6
[12] Filippova T. F., “Set-valued solutions to impulsive differential inclusions”, Math. Comput. Model. Dyn. Syst., 11:2 (2005), 149–158 | MR | Zbl
[13] Filippova T. F., “State estimation in control problems under uncertainty and nonlinearity”, Proc. of the 6th Vienna International conference on mathematical modelling, MATHMOD–2009, Vienna, 2009, 1–7
[14] Filippova T. F., Berezina E. V., “On state estimation approaches for uncertain dynamical systems with quadratic nonlinearity: theory and computer simulations”, Lecture Notes in Computer Science, 4818, Springer, Berlin, 2008, 326–333 | MR | Zbl
[15] Krasovskii N. N., Subbotin A. I., Positional differential games, Springer-Verlag, Berlin, 1988, 517 pp. | Zbl
[16] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl
[17] Kurzhanski A. B., Filippova T. F., “On the theory of trajectory tubes – a mathematical formalism for uncertain dynamics, viability and control”, Advances in nonlinear dynamics and control: a report from Russia, Progress in Systems and Control Theory, 17, ed. A. B. Kurzhanski, Birkhäuser, Boston etc., 1993, 122–188 | MR
[18] Panasyuk A. I., “Equations of attainable set dynamics. Part 1: Integral funnel equations”, J. Optimiz. Theory Appl., 62:2 (1990), 349–366 | DOI | MR
[19] Veliov V. M., “Second order discrete approximations to strongly convex differential inclusions”, Systems and Control Letters, 13:3 (1989), 263–269 | DOI | MR | Zbl
[20] Veliov V., “Second-order discrete approximation to linear differential inclusions”, SIAM J. Numer. Anal., 29:2 (1992), 439–451 | DOI | MR | Zbl
[21] Wolenski P. R., “The exponential formula for the reachable set of a Lipschitz differential inclusion”, SIAM J. Contr. and Optimiz., 28:5 (1990), 1148–1161 | DOI | MR | Zbl