On the set of limit values of local diffeomorphisms in wavefront evolution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 171-185
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of the appearance of nonsmooth singularities in the evolution of plane wavefronts in the Dirichlet problem for a first-order partial differential equation. The approach to investigating the singularities is based on the properties of local diffeomorphisms. A generalization of the classical notion of a derivative is introduced, which coincides in particular cases with the Schwarz derivative. The results of modeling solutions of nonsmooth dynamic problems are presented.
Keywords:
first-order partial differential equation, minimax solution, diffeomorphism, optimal result function, symmetry set.
Mots-clés : eikonal
Mots-clés : eikonal
@article{TIMM_2010_16_1_a13,
author = {A. A. Uspenskii and P. D. Lebedev},
title = {On the set of limit values of local diffeomorphisms in wavefront evolution},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {171--185},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/}
}
TY - JOUR AU - A. A. Uspenskii AU - P. D. Lebedev TI - On the set of limit values of local diffeomorphisms in wavefront evolution JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 171 EP - 185 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/ LA - ru ID - TIMM_2010_16_1_a13 ER -
A. A. Uspenskii; P. D. Lebedev. On the set of limit values of local diffeomorphisms in wavefront evolution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 171-185. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/