On the set of limit values of local diffeomorphisms in wavefront evolution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 171-185

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the appearance of nonsmooth singularities in the evolution of plane wavefronts in the Dirichlet problem for a first-order partial differential equation. The approach to investigating the singularities is based on the properties of local diffeomorphisms. A generalization of the classical notion of a derivative is introduced, which coincides in particular cases with the Schwarz derivative. The results of modeling solutions of nonsmooth dynamic problems are presented.
Keywords: first-order partial differential equation, minimax solution, diffeomorphism, optimal result function, symmetry set.
Mots-clés : eikonal
@article{TIMM_2010_16_1_a13,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {On the set of limit values of local diffeomorphisms in wavefront evolution},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {171--185},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - On the set of limit values of local diffeomorphisms in wavefront evolution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 171
EP  - 185
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/
LA  - ru
ID  - TIMM_2010_16_1_a13
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T On the set of limit values of local diffeomorphisms in wavefront evolution
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 171-185
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/
%G ru
%F TIMM_2010_16_1_a13
A. A. Uspenskii; P. D. Lebedev. On the set of limit values of local diffeomorphisms in wavefront evolution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 171-185. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/