On the set of limit values of local diffeomorphisms in wavefront evolution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 171-185
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of the appearance of nonsmooth singularities in the evolution of plane wavefronts in the Dirichlet problem for a first-order partial differential equation. The approach to investigating the singularities is based on the properties of local diffeomorphisms. A generalization of the classical notion of a derivative is introduced, which coincides in particular cases with the Schwarz derivative. The results of modeling solutions of nonsmooth dynamic problems are presented.
Keywords: first-order partial differential equation, minimax solution, diffeomorphism, optimal result function, symmetry set.
Mots-clés : eikonal
@article{TIMM_2010_16_1_a13,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {On the set of limit values of local diffeomorphisms in wavefront evolution},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {171--185},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - On the set of limit values of local diffeomorphisms in wavefront evolution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 171
EP  - 185
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/
LA  - ru
ID  - TIMM_2010_16_1_a13
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T On the set of limit values of local diffeomorphisms in wavefront evolution
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 171-185
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/
%G ru
%F TIMM_2010_16_1_a13
A. A. Uspenskii; P. D. Lebedev. On the set of limit values of local diffeomorphisms in wavefront evolution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 171-185. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a13/

[1] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona—-Yakobi tipa eikonala. I”, Mat. sb., 98(140):3 (1974), 450–493 | MR | Zbl

[2] Subbotin A. I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl

[3] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[4] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003, 336 pp.

[5] Kolokoltsov V. N., Maslov V. P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296:4 (1987), 796–800 | MR

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[7] Slyusarev G. G., Geometricheskaya optika, Izd-vo AN SSSR, M., 1946, 332 pp. | MR

[8] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996, 334 pp. | MR

[9] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Ser. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR

[10] Uspenskii A. A., Ushakov V. N., Fomin A. N., $\alpha$-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.04, No 543-V2004, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 21 pp.

[11] Uspenskii A. A., Analiticheskie metody vychisleniya mery nevypuklosti ploskikh mnozhestv, Dep. v VINITI 07.02.07, No 104-V2007, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2007, 38 pp.

[12] Lebedev P. D., Uspenskii A. A., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. IX mezhdunar. Chetaevskoi konf., v. 5, Irkutsk, 2007, 224–236

[13] Lebedev P. D., Uspenskii A. A., “Analiticheskoe i chislennoe konstruirovanie funktsii optimalnogo rezultata dlya odnogo klassa zadach bystrodeistviya”, Prikl. matematika i informatika, Tr. fakulteta VMiK MGU M. V. Lomonosova, 27, MAKS Press, M., 2007, 65–79

[14] Lebedev P. D., Uspenskii A. A., “Geometriya i asimptotika volnovykh frontov”, Izv. vuzov. Matematika, 2008, no. 3, 27–37 | MR | Zbl

[15] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 182–191 | Zbl

[16] Lebedev P. D., Uspenskii A. A., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 82–99

[17] Lebedev P. D., Uspenskii A. A., “Protsedury vychisleniya mery nevypuklosti ploskogo mnozhestva”, Vychisl. matematika i mat. fizika, 49:3 (2009), 431–440 | MR

[18] Rashevskii P. K., Kurs differentsialnoi geometrii, 4-e izd., Editorial-URSS, M., 2003, 432 pp.

[19] Brus Dzh., Dzhiblin P., Krivye i osobennosti: Geometricheskoe vvedenie v teoriyu osobennostei, Mir, M., 1988, 262 pp. | MR

[20] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[21] Blyashke V., Krug i shar, Nauka, M., 1967, 232 pp. | MR

[22] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 484 pp. | MR