On some properties of the control problem under a program interference in a formalization based on the minimax risk (regret) criterion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 140-151
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem under uncertainty for a system described by an ordinary differential equation with a terminal quality criterion is considered. The control and interference are subject to geometric constraints. The problem is formalized in classes of nonanticipating control strategies and program interferences with the use of constructive ideal motions and the Savage minimax risk (regret) criterion. The properties of the used motion bundles are described and a number of relations characterizing the optimal risk function, which is an element of the formalization, are presented.
Keywords: optimal control, program interference, Savage criterion.
@article{TIMM_2010_16_1_a11,
     author = {D. A. Serkov},
     title = {On some properties of the control problem under a~program interference in a~formalization based on the minimax risk (regret) criterion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {140--151},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a11/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - On some properties of the control problem under a program interference in a formalization based on the minimax risk (regret) criterion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 140
EP  - 151
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a11/
LA  - ru
ID  - TIMM_2010_16_1_a11
ER  - 
%0 Journal Article
%A D. A. Serkov
%T On some properties of the control problem under a program interference in a formalization based on the minimax risk (regret) criterion
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 140-151
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a11/
%G ru
%F TIMM_2010_16_1_a11
D. A. Serkov. On some properties of the control problem under a program interference in a formalization based on the minimax risk (regret) criterion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 140-151. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a11/

[1] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya. I”, Izv. AN SSSR. Tekhn. kibernetika, 1973, no. 2, 3–18 | MR

[2] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya. II”, Izv. AN SSSR. Tekhn. kibernetika, 1973, no. 3, 22–42 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[5] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[6] Savage L. J., “The theory of statistical decision”, J. Amer. Stat. Association, 46 (1951), 55–67 | DOI | Zbl

[7] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[8] Serkov D. A., “Strategii minimaksnogo riska (sozhaleniya) v sisteme s prostymi dvizheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 121–135

[9] Serkov D. A., “Strategiya minimaksnogo riska (sozhaleniya) dlya odnogo klassa zadach upravleniya v usloviyakh dinamicheskikh pomekh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 192–200 | Zbl

[10] Serkov D. A., “On the optimal risk function for the system under dynamic disturbances”, Preprints (DVD-ROM) of IFAC workshop on control applications of optimization, IFAC CAO' 09, Jyväskylä, 2009