Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139
Voir la notice de l'article provenant de la source Math-Net.Ru
The topological properties of a pseudometric space defined by a measure are investigated. Criteria of compactness and $\sigma$-compactness of this space are proved. A new sufficient condition for the uniform convergence (over an event class) of frequencies to probabilities is proved as a corollary.
Keywords:
metric Boolean algebra, sigma-compactness, uniform convergence of frequencies to probabilities over an event class.
@article{TIMM_2010_16_1_a10,
author = {E. G. Pytkeev and M. Yu. Khachai},
title = {Sigma-compactness of metric {Boolean} algebras and uniform convergence of frequencies to probabilities},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {127--139},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/}
}
TY - JOUR AU - E. G. Pytkeev AU - M. Yu. Khachai TI - Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 127 EP - 139 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/ LA - ru ID - TIMM_2010_16_1_a10 ER -
%0 Journal Article %A E. G. Pytkeev %A M. Yu. Khachai %T Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities %J Trudy Instituta matematiki i mehaniki %D 2010 %P 127-139 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/ %G ru %F TIMM_2010_16_1_a10
E. G. Pytkeev; M. Yu. Khachai. Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/