Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139
Voir la notice du chapitre de livre
The topological properties of a pseudometric space defined by a measure are investigated. Criteria of compactness and $\sigma$-compactness of this space are proved. A new sufficient condition for the uniform convergence (over an event class) of frequencies to probabilities is proved as a corollary.
Keywords:
metric Boolean algebra, sigma-compactness, uniform convergence of frequencies to probabilities over an event class.
@article{TIMM_2010_16_1_a10,
author = {E. G. Pytkeev and M. Yu. Khachai},
title = {Sigma-compactness of metric {Boolean} algebras and uniform convergence of frequencies to probabilities},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {127--139},
year = {2010},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/}
}
TY - JOUR AU - E. G. Pytkeev AU - M. Yu. Khachai TI - Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 127 EP - 139 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/ LA - ru ID - TIMM_2010_16_1_a10 ER -
%0 Journal Article %A E. G. Pytkeev %A M. Yu. Khachai %T Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities %J Trudy Instituta matematiki i mehaniki %D 2010 %P 127-139 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/ %G ru %F TIMM_2010_16_1_a10
E. G. Pytkeev; M. Yu. Khachai. Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/
[1] Vapnik V. N., Chervonenkis A. Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974, 528 pp. | MR | Zbl
[2] Vapnik V. N., Statistical learning theory, Wiley, New York, 1998, 740 pp. | MR | Zbl
[3] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1952, 896 pp.
[4] Birkgof G., Teoriya reshetok, Nauka, M., 1984, 568 pp. | MR
[5] Kadets V. M., Kurs funktsionalnogo analiza, Izd-vo Khark. natsional. un-ta, Kharkov, 2004, 504 pp.
[6] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk; Izd-vo Instituta matematiki SO RAN, Novosibirsk, 1997, 772 pp. | MR | Zbl