Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139

Voir la notice de l'article provenant de la source Math-Net.Ru

The topological properties of a pseudometric space defined by a measure are investigated. Criteria of compactness and $\sigma$-compactness of this space are proved. A new sufficient condition for the uniform convergence (over an event class) of frequencies to probabilities is proved as a corollary.
Keywords: metric Boolean algebra, sigma-compactness, uniform convergence of frequencies to probabilities over an event class.
@article{TIMM_2010_16_1_a10,
     author = {E. G. Pytkeev and M. Yu. Khachai},
     title = {Sigma-compactness of metric {Boolean} algebras and uniform convergence of frequencies to probabilities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--139},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - M. Yu. Khachai
TI  - Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 127
EP  - 139
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/
LA  - ru
ID  - TIMM_2010_16_1_a10
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A M. Yu. Khachai
%T Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 127-139
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/
%G ru
%F TIMM_2010_16_1_a10
E. G. Pytkeev; M. Yu. Khachai. Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/