Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The topological properties of a pseudometric space defined by a measure are investigated. Criteria of compactness and $\sigma$-compactness of this space are proved. A new sufficient condition for the uniform convergence (over an event class) of frequencies to probabilities is proved as a corollary.
Keywords: metric Boolean algebra, sigma-compactness, uniform convergence of frequencies to probabilities over an event class.
@article{TIMM_2010_16_1_a10,
     author = {E. G. Pytkeev and M. Yu. Khachai},
     title = {Sigma-compactness of metric {Boolean} algebras and uniform convergence of frequencies to probabilities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--139},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - M. Yu. Khachai
TI  - Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 127
EP  - 139
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/
LA  - ru
ID  - TIMM_2010_16_1_a10
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A M. Yu. Khachai
%T Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 127-139
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/
%G ru
%F TIMM_2010_16_1_a10
E. G. Pytkeev; M. Yu. Khachai. Sigma-compactness of metric Boolean algebras and uniform convergence of frequencies to probabilities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 127-139. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a10/

[1] Vapnik V. N., Chervonenkis A. Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974, 528 pp. | MR | Zbl

[2] Vapnik V. N., Statistical learning theory, Wiley, New York, 1998, 740 pp. | MR | Zbl

[3] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1952, 896 pp.

[4] Birkgof G., Teoriya reshetok, Nauka, M., 1984, 568 pp. | MR

[5] Kadets V. M., Kurs funktsionalnogo analiza, Izd-vo Khark. natsional. un-ta, Kharkov, 2004, 504 pp.

[6] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk; Izd-vo Instituta matematiki SO RAN, Novosibirsk, 1997, 772 pp. | MR | Zbl