Optimal communication channels with noise in problems of estimation and motion correction
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 15-29
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some classes of data communication channels with Gaussian noise, which can be used in problems of estimation and motion correction, are considered. The necessity to study the communication channels with noise arises under solving the mentioned problems when communication constraints are taken into account. It is assumed that a controlled or estimated object is situated at a considerable distance from the control and information processing center (CIPC), where a phase state of the object is estimated and a control action is formed. The object and the CIPC are connected by the information channel with noise and parameter constraints. Information is encoded at the channel entrance in each direction; it is decoded at the exit. In the specified classes of information channels, the best channel is determined in the mean-square sense. Because of the possible statistical uncertainty of disturbances acting on the object, optimal minimax channels are determined. An application of the optimal communication channels to above problems of estimation and motion correction is considered.
Mots-clés : estimation, motion correction, Gaussian noise.
Keywords: program control, communication channel
@article{TIMM_2010_16_1_a1,
     author = {B. I. Anan'ev},
     title = {Optimal communication channels with noise in problems of estimation and motion correction},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {15--29},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a1/}
}
TY  - JOUR
AU  - B. I. Anan'ev
TI  - Optimal communication channels with noise in problems of estimation and motion correction
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 15
EP  - 29
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a1/
LA  - ru
ID  - TIMM_2010_16_1_a1
ER  - 
%0 Journal Article
%A B. I. Anan'ev
%T Optimal communication channels with noise in problems of estimation and motion correction
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 15-29
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a1/
%G ru
%F TIMM_2010_16_1_a1
B. I. Anan'ev. Optimal communication channels with noise in problems of estimation and motion correction. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 15-29. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a1/

[1] Ananev B. I., “Otsenivanie sluchainykh informatsionnykh mnozhestv mnogoshagovykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 35–41

[2] Anan'ev B. I., “Multiestimates for linear-Gaussian continuous systems under communication constraints”, 4th Internat. sci. conf. on physics and control, PHYSCON 2009 (Catania, 2009), electronic publ., IPACS Electronic Library http://lib.physcon.ru/?item=1931

[3] Ananev B. I., “Korrektsiya dvizheniya statisticheski neopredelennoi sistemy pri kommunikatsionnykh ogranicheniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 20–31

[4] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[5] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[6] Ananev B. I., Anikin S. A., “Zadacha vosstanovleniya vkhodnykh vozdeistvii pri kommunikatsionnykh ogranicheniyakh”, Avtomatika i telemekhanika, 2009, no. 7, 73–84 | MR

[7] Kolmogorov A. N., Teoriya informatsii i teoriya algoritmov, Nauka, M., 1987, 304 pp. | MR | Zbl