Investigation of a mathematical model of a signal-controlled junction
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 108-119
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Efficient traffic organization is one of the most urgent problems of the modern society. The choice of optimal control regimes for intersecting traffic flows is a component of this problem. At present, a detailed description of the motion of an individual car and of a traffic flow is developed, which made it possible to create simulation programs that model traffic flows at a signal-controlled junction accurately enough. However, the the problem of developing a compact mathematical description of traffic motion at a junction is still important. We propose a model describing traffic flows through a signal-controlled junction; the model is based on the theory of queuing systems.
Keywords: control, Markov stochastic processes, traffic flows.
@article{TIMM_2009_15_4_a9,
     author = {D. S. Zavalishchin and G. A. Timofeeva},
     title = {Investigation of a~mathematical model of a~signal-controlled junction},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {108--119},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a9/}
}
TY  - JOUR
AU  - D. S. Zavalishchin
AU  - G. A. Timofeeva
TI  - Investigation of a mathematical model of a signal-controlled junction
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 108
EP  - 119
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a9/
LA  - ru
ID  - TIMM_2009_15_4_a9
ER  - 
%0 Journal Article
%A D. S. Zavalishchin
%A G. A. Timofeeva
%T Investigation of a mathematical model of a signal-controlled junction
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 108-119
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a9/
%G ru
%F TIMM_2009_15_4_a9
D. S. Zavalishchin; G. A. Timofeeva. Investigation of a mathematical model of a signal-controlled junction. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 108-119. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a9/

[1] Lighthill M. J., Whitham G. B., “On kinematic waves. II. A theory of traffic on long crowded roads”, Proc. Royal Soc. of London. Ser. A, 229 (1955), 317–345 | DOI | MR | Zbl

[2] Nagel K., Wagner P., Woesler R., “Still flowing: approaches to traffic flow and traffic jam modeling”, Operations Research, 51:5 (2003), 681–710 | DOI | MR | Zbl

[3] Kerner B. S., “Three-phase traffic theory and highway capacity”, Physica. Ser. A, 333 (2004), 379–440 | DOI | MR

[4] Kurzhanskii A. B., “Zadacha upravleniya potokami transporta na avtostrade”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, sb. tez. dokl. Kh Mezhdunar. seminara im. E. S. Pyatnitskogo, IPU RAN, M., 2008, 168–169

[5] Aliev A. S., Strelnikov A. I., Shvetsov V. I., Shershevskii Yu. Z., “Modelirovanie transportnykh potokov v krupnom gorode s primeneniem k moskovskoi aglomeratsii”, Avtomatika i telemekhanika, 2005, no. 11, 113–125 | Zbl

[6] Shvetsov V. I., “Matematicheskoe modelirovanie transportnykh potokov”, Avtomatika i telemekhanika, 2003, no. 11, 3–46 | MR | Zbl

[7] Treiber M., Hennecke A., Helbing D., “Congested traffic states in empirical observations and microscopic simulations”, Phys. Rev. Ser. E, 62 (2000), 1805–1824 | DOI

[8] Jiang R., Wu Q., Zhu Z., “Full velocity difference model for a car-following theory”, Phys. Rev. Ser. E, 64 (2001), 17–101

[9] Nagel K., Schreckenberg M., “A cellular automaton model for freeway traffic”, J. Phys. France Ser. I, 2 (1992), 2221–2229 | DOI

[10] Gipps P. G., “A behavioural car-following model for computer simulation”, Transp. Research. Part B: Methodological, 5 (1981), 105–111 | DOI

[11] SUMO (Simulation of Urban MObility), Open source traffic simulator http://sumo. sourceforge.net

[12] Treiber M., The Website http://www.traffic-simulation.de provides an interactive simulation of the Intelligent Driver Model in several scenarios including open-source access, May 2007

[13] Allsop R. B., “SINSET: A computer program for traffic capacity of signal-controlled road junction”, Traffic Eng. Control., 12 (1971), 58–60

[14] Importa G., Cantarella G. E., “Control systems design for an individual signalised junction”, Transp. Res. Ser. B, 18 (1984), 147–167 | DOI | MR

[15] Sen S., Head L., “Controlled optimization of phases and intersection”, Transp. Sci., 31 (1997), 5–17 | DOI | Zbl

[16] Alvarez I., Poznyak A., Malo A., “Urban traffic control problem via game theory application”, Proc. 46th IEEE conf. on decision and control, New-Orleans, 2007, 957–961

[17] Zavalischin D. S., Timofeeva G. A., “Matematicheskaya model reguliruemogo perekrestka”, Transport Urala, 2008, no. 2(17), 92–97

[18] Zavalishchin D. S., Timofeeva G. A., “Mathematical modelling of vehicle flow on a crossroads”, Proc. 18th IEEE international conf. on control applications, Part of 2009 IEEE Multi-conference on systems and control, Saint Petersburg, 2009, 849–852

[19] Akhmadinurov M. M., “Opredelenie optimalnogo tsikla svetofora pri zadannom vkhodyaschem potoke avtomobilei”, Politransportnye sistemy, materialy VI Vseros. nauch.-tekhn. konf., Ch. 1, Novosibirsk, 2009, 45–49

[20] Venttsel E. S., Ovcharov L. A., Teoriya sluchainykh protsessov i ee inzhenernye prilozheniya, Nauka, M., 1991, 384 pp. | MR

[21] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 718 pp. | MR

[22] Miller Bruce L., “Finite state continuous time Markov decision process with a finite planning horizon”, SIAM J. Control., 6:2 (1968), 266–279 | DOI | MR

[23] Miller B. M., Miller G. B., Siemenikhin K. V., “Control of Markov chains with constraints”, Identifikatsiya sistem i zadachi upravleniya, tr. VIII Mezhdunar. konf., IPU RAN, M., 2009, 737–760