Asymptotics of a solution to an optimal boundary control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 95-107
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of optimal boundary control of solutions of an elliptic-type equation with a small coefficient at the highest derivative and integral restrictions on the control is considered. Asymptotic estimates for solutions of a problem that approximates the original problem are obtained.
Keywords: singular problems, optimal control, boundary-value problems for systems of partial differential equations, asymptotic expansions.
@article{TIMM_2009_15_4_a8,
     author = {A. R. Danilin and A. P. Zorin},
     title = {Asymptotics of a~solution to an optimal boundary control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {95--107},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a8/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - A. P. Zorin
TI  - Asymptotics of a solution to an optimal boundary control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 95
EP  - 107
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a8/
LA  - ru
ID  - TIMM_2009_15_4_a8
ER  - 
%0 Journal Article
%A A. R. Danilin
%A A. P. Zorin
%T Asymptotics of a solution to an optimal boundary control problem
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 95-107
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a8/
%G ru
%F TIMM_2009_15_4_a8
A. R. Danilin; A. P. Zorin. Asymptotics of a solution to an optimal boundary control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 95-107. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a8/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[2] Danilin A. R., “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Mat. sb., 189:11 (1998), 27–60 | MR | Zbl

[3] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | MR | Zbl

[4] Kapustyan V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Matematika. Estestvoznanie. Tekhnicheskie nauki, 1992, no. 2, 70–74 | MR

[5] Moren K., Metody gilbertova prostranstva, Mir, M., 1965, 570 pp. | MR

[6] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl

[7] Ilin A. M., “Pogranichnyi sloi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 175–214 | MR | Zbl

[8] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl