Estimates of reachable sets of multidimensional control systems with nonlinear interconnections
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 82-94
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problem of constructing external estimates for the reachable set of a multidimensional control system by means of vector estimators. A system is considered that permits a decomposition into several independent subsystems with simple structure (for example, linear subsystems), which are connected to each other by means of nonlinear interconnections. For each of the subsystems, an external estimate of the reachable set is assumed to be known; this estimate is representable in the form of a level set of some function satisfying a differential inequality. An estimate for the reachable set of the united system is constructed with the use of estimates for subsystems. The method of deriving the estimates is based on constructing comparison systems for analogs of vector Lyapunov functions (cost functions).
Keywords: control system, reachable set, comparison principle, vector Lyapunov function.
@article{TIMM_2009_15_4_a7,
     author = {M. I. Gusev},
     title = {Estimates of reachable sets of multidimensional control systems with nonlinear interconnections},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--94},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a7/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - Estimates of reachable sets of multidimensional control systems with nonlinear interconnections
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 82
EP  - 94
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a7/
LA  - ru
ID  - TIMM_2009_15_4_a7
ER  - 
%0 Journal Article
%A M. I. Gusev
%T Estimates of reachable sets of multidimensional control systems with nonlinear interconnections
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 82-94
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a7/
%G ru
%F TIMM_2009_15_4_a7
M. I. Gusev. Estimates of reachable sets of multidimensional control systems with nonlinear interconnections. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 82-94. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a7/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[3] Krasovski N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR | Zbl

[4] Lempio F., Veliov V. M., “Discrete approximations to differential inclusions”, GAMM Mitt., 21:2 (1998), 101–135 | MR

[5] Guseinov Kh. I., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 1998, no. 2, 179–186 | MR

[6] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, SCFA, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[7] Kurzhanski A. B., Varaiya P., “Reachability analysis for uncertain systems – the ellipsoidal technique”, Dyn. Contin. Discrete Impuls. Syst. Ser. B, 2002, no. 3, 347–367 | MR | Zbl

[8] Varaiya P., Kurzhanskii A. B., “Ellipsoidalnye metody dlya zadach dinamiki i upravleniya. 1”, Sovremennaya matematika i ee prilozheniya, 23, In-t kibernetiki AN Gruzii, Tbilisi, 2005, 34–72 | MR

[9] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl

[10] Sethian J. A., Level set methods and fast marching methods, Cambridge Univ. Press, New York, 1999, 378 pp. | MR | Zbl

[11] Kurzhanski A. B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl

[12] Mitchell I. M., Tomlin C. J., “Overapproximating reachable sets by Hamilton.Jacobi projections”, J. Sci. Comput., 19:1–3 (2003), 323–346 | DOI | MR | Zbl

[13] Kurzhanskii A. B., “Printsip sravneniya dlya uravnenii Gamiltona–Yakobi v teorii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, Ekaterinburg, 2006, 173–183 | MR | Zbl

[14] Matrosov B. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980, 479 pp.

[15] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR

[16] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 472 pp.