Optimal control under permanent disturbances
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 52-68
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a dynamical system under unknown disturbances, an optimal observation problem arising from control problems under set-membership uncertainty is considered in the case when the initial state is not determined completely. It is required to obtain information on the states of the system by means of processing incomplete and inaccurate measurements of its current states. Methods of constructing a posteriori distributions and realizations of positional solutions are described. The results are illustrated by examples.
Keywords: linear systems, set-membership uncertainty, measurements, algorithm.
Mots-clés : optimal observation
@article{TIMM_2009_15_4_a5,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
     title = {Optimal control under permanent disturbances},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {52--68},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
TI  - Optimal control under permanent disturbances
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 52
EP  - 68
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/
LA  - ru
ID  - TIMM_2009_15_4_a5
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%T Optimal control under permanent disturbances
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 52-68
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/
%G ru
%F TIMM_2009_15_4_a5
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. Optimal control under permanent disturbances. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 52-68. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/

[1] Krasovskii N. N., “K teorii upravlyaemosti i nablyudaemosti lineinykh dinamicheskikh sistem”, Prikl. matematika i mekhanika, 28:1 (1964), 3–14 | MR

[2] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[3] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp. | MR

[4] Gabasov R., Kirillova F. M., “Soyuznye zadachi upravleniya, nablyudeniya i identifikatsii”, Dokl. AN BSSR, 34:9 (1990), 777–780 | MR | Zbl

[5] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe nablyudenie za nestatsionarnymi dinamicheskimi sistemami”, Izv. RAN. Teoriya i sistemy upravleniya, 2002, no. 2, 35–46 | MR

[6] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10, no. 2, Ekaterinburg, 2004, 35–57 | MR | Zbl

[7] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vychis. matematiki i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl

[8] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp. | MR | Zbl

[9] Balashevich N. V., Gabasov R., Kirillova F. M., “Algoritmy programmnoi i pozitsionnoi optimizatsii sistem upravleniya s promezhutochnymi fazovymi ogranicheniyami”, Zhurn. vychis. matematiki i mat. fiziki, 41:10 (2001), 1485–1504 | MR | Zbl

[10] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii. Ch. 1. Lineinye zadachi, Izd-vo BGU, Minsk, 1984, 214 pp. | MR | Zbl

[11] Gabasov R., Kirillova F. M., Metody lineinogo programmirovaniya. Ch. 3. Spetsialnye zadachi, Izd-vo BGU, Minsk, 1980, 368 pp. | MR | Zbl