Optimal control under permanent disturbances
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 52-68
Voir la notice de l'article provenant de la source Math-Net.Ru
For a dynamical system under unknown disturbances, an optimal observation problem arising from control problems under set-membership uncertainty is considered in the case when the initial state is not determined completely. It is required to obtain information on the states of the system by means of processing incomplete and inaccurate measurements of its current states. Methods of constructing a posteriori distributions and realizations of positional solutions are described. The results are illustrated by examples.
Keywords:
linear systems, set-membership uncertainty, measurements, algorithm.
Mots-clés : optimal observation
Mots-clés : optimal observation
@article{TIMM_2009_15_4_a5,
author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
title = {Optimal control under permanent disturbances},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {52--68},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/}
}
TY - JOUR AU - R. Gabasov AU - N. M. Dmitruk AU - F. M. Kirillova TI - Optimal control under permanent disturbances JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 52 EP - 68 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/ LA - ru ID - TIMM_2009_15_4_a5 ER -
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. Optimal control under permanent disturbances. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 52-68. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a5/