Object visibility for a group of observers with inaccurately given coordinates
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 44-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A function is introduced that characterizes the relative visibility of a moving object for an observer with inaccurately given coordinates. The directional differentiability of this function is established and, for the case of a moving observer, a differentiation formula is given. The visibility characteristic of an object for a group of observers is defined and the problem of minimizing this characteristic is considered.
Keywords: visibility characterization of a moving object, directional differentiability.
@article{TIMM_2009_15_4_a4,
     author = {V. I. Berdyshev},
     title = {Object visibility for a~group of observers with inaccurately given coordinates},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--51},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a4/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Object visibility for a group of observers with inaccurately given coordinates
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 44
EP  - 51
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a4/
LA  - ru
ID  - TIMM_2009_15_4_a4
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Object visibility for a group of observers with inaccurately given coordinates
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 44-51
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a4/
%G ru
%F TIMM_2009_15_4_a4
V. I. Berdyshev. Object visibility for a group of observers with inaccurately given coordinates. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 44-51. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a4/

[1] Berdyshev V. I., “Dva sposoba kharakterizatsii vidimosti dvizhuscheisya tochki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 69–81

[2] Berdyshev V. I., “Vidimost ob'ekta dlya nablyudatelya s netochno zadannymi koordinatami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 21–28

[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR