Voir la notice du chapitre de livre
@article{TIMM_2009_15_4_a3,
author = {V. I. Bakhtin and V. V. Gorokhovik},
title = {Optimality conditions of first and second order in vector optimization problems on metric spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {32--43},
year = {2009},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/}
}
TY - JOUR AU - V. I. Bakhtin AU - V. V. Gorokhovik TI - Optimality conditions of first and second order in vector optimization problems on metric spaces JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 32 EP - 43 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/ LA - ru ID - TIMM_2009_15_4_a3 ER -
%0 Journal Article %A V. I. Bakhtin %A V. V. Gorokhovik %T Optimality conditions of first and second order in vector optimization problems on metric spaces %J Trudy Instituta matematiki i mehaniki %D 2009 %P 32-43 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/ %G ru %F TIMM_2009_15_4_a3
V. I. Bakhtin; V. V. Gorokhovik. Optimality conditions of first and second order in vector optimization problems on metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 32-43. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/
[1] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 256 pp. | MR | Zbl
[2] Gorokhovik V. V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990, 239 pp. | MR | Zbl
[3] Gorokhovik V. V., Rachkovskii N. N., Usloviya pervogo i vtorogo poryadka lokalnoi sobstvennoi minimalnosti v zadachakh vektornoi optimizatsii, preprint No 50(450), In-t matematiki AN BSSR, Minsk, 1990, 27 pp.
[4] Gorokhovik V. V., “K usloviyam lokalnogo minimuma vtorogo poryadka v gladkikh zadachakh optimizatsii s abstraktnymi ogranicheniyami”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2005, no. 3, 5–12 | MR
[5] Gorokhovik V. V., “Asimptoticheski kasatelnyi konus vtorogo poryadka k mnozhestvam i usloviya lokalnogo minimuma v zadache optimizatsii s ogranicheniyami”, Vestn. S.-Peterb. un-ta. Informatika i teoriya upravleniya, 2006, no. 1, 34–41
[6] Gorokhovik V. V., “Kasatelnye vektory vtorogo poryadka k mnozhestvam i usloviya minimalnosti dlya tochek podmnozhestv uporyadochennykh normirovannykh prostranstv”, Tr. In-ta matematiki NAN Belarusi (Minsk), 14:2 (2006), 35–47
[7] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | Zbl
[8] Demyanov V. F., Rubinov A. M., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo Leningrad. un-ta, L., 1968, 180 pp. | MR
[9] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1974, 479 pp. | MR
[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1990, 432 pp. | MR
[11] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970, 351 pp. | MR
[12] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl
[13] Ben-Tal A., “Second order and related extremality conditions in nonlinear programming”, J. Optim. Theory Appl., 31:2 (1980), 143–165 | DOI | MR | Zbl
[14] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Programming Stud., 19 (1982), 39–76 | MR
[15] Bonnans J. F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optim., 9:2 (1999), 466–492 | DOI | MR | Zbl
[16] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, Berlin, 2000, 601 pp. | MR | Zbl
[17] Cambini R., Martein L., Vlach M., “Second order tangent sets and optimality conditions”, Math. Japon., 49:3 (1999), 451–461 | MR | Zbl
[18] Göpfert A., Riahi H., Tammer Chr., Zălinescu C., Variational methods in partially ordered spaces, Springer, New York, 2003, 365 pp. | MR | Zbl
[19] Ioffe A. D., “Necessary and sufficient conditions for a local minimum. III: Second order conditions and augmented duality”, SIAM J. Control Optim., 17:2 (1979), 266–288 | DOI | MR | Zbl
[20] Jameson G., Ordered linear spaces, Springer, Berlin, 1970, 194 pp. | MR | Zbl
[21] Jiménez B., Novo V., “Second order necessary conditions in set constrained differentiable vector optimization”, Math. Methods Oper. Res., 58:2 (2003), 299–317 | DOI | MR | Zbl
[22] Jiménez B., Novo V., “Optimality conditions in differentiable vector optimization via second-order tangent sets”, Appl. Math. Optim., 49:2 (2004), 123–144 | MR | Zbl
[23] Mordukhovich B. S., Variational analysis and generalized differentiation. V. I: Basic theory, Springer, Berlin et al., 2005, 1057 pp. | MR
[24] Penot J. P., “Second order conditions for optimization problems with constraints”, SIAM J. Control Optim., 37:1 (1999), 303–318 | DOI | MR | Zbl
[25] Peressini A. L., Ordered topologocal vector spaces, Harper and Row, New York, 1967, 228 pp. | MR | Zbl
[26] Rockafellar R. T., Wets R. J.-B., Variational analysis, Springer-Verlag, Berlin, 1998, 734 pp. | MR | Zbl
[27] Shapiro A., “Semi-infinite programming, duality, discretization and optimality conditions”, Optimization, 58:2 (2009), 133–161 | DOI | MR | Zbl