Optimality conditions of first and second order in vector optimization problems on metric spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 32-43
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For mappings defined on metric spaces with values in Banach spaces, the notions of derivative vectors of first and second order are introduced. These notions are used to establish necessary conditions and sufficient conditions of first and second order for points of local $\prec$-minimum of such mappings, where $\prec$ is the strict preorder relation defined on the space of values of the mapping that is minimized. Minimality conditions are obtained as corollaries for the case when the mapping is defined on a subset of a normed space.
Keywords: ector optimization, metric spaces, conical local approximations of sets, derivatives of mappings.
@article{TIMM_2009_15_4_a3,
     author = {V. I. Bakhtin and V. V. Gorokhovik},
     title = {Optimality conditions of first and second order in vector optimization problems on metric spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--43},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/}
}
TY  - JOUR
AU  - V. I. Bakhtin
AU  - V. V. Gorokhovik
TI  - Optimality conditions of first and second order in vector optimization problems on metric spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 32
EP  - 43
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/
LA  - ru
ID  - TIMM_2009_15_4_a3
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%A V. V. Gorokhovik
%T Optimality conditions of first and second order in vector optimization problems on metric spaces
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 32-43
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/
%G ru
%F TIMM_2009_15_4_a3
V. I. Bakhtin; V. V. Gorokhovik. Optimality conditions of first and second order in vector optimization problems on metric spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 32-43. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a3/

[1] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 256 pp. | MR | Zbl

[2] Gorokhovik V. V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990, 239 pp. | MR | Zbl

[3] Gorokhovik V. V., Rachkovskii N. N., Usloviya pervogo i vtorogo poryadka lokalnoi sobstvennoi minimalnosti v zadachakh vektornoi optimizatsii, preprint No 50(450), In-t matematiki AN BSSR, Minsk, 1990, 27 pp.

[4] Gorokhovik V. V., “K usloviyam lokalnogo minimuma vtorogo poryadka v gladkikh zadachakh optimizatsii s abstraktnymi ogranicheniyami”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2005, no. 3, 5–12 | MR

[5] Gorokhovik V. V., “Asimptoticheski kasatelnyi konus vtorogo poryadka k mnozhestvam i usloviya lokalnogo minimuma v zadache optimizatsii s ogranicheniyami”, Vestn. S.-Peterb. un-ta. Informatika i teoriya upravleniya, 2006, no. 1, 34–41

[6] Gorokhovik V. V., “Kasatelnye vektory vtorogo poryadka k mnozhestvam i usloviya minimalnosti dlya tochek podmnozhestv uporyadochennykh normirovannykh prostranstv”, Tr. In-ta matematiki NAN Belarusi (Minsk), 14:2 (2006), 35–47

[7] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | Zbl

[8] Demyanov V. F., Rubinov A. M., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo Leningrad. un-ta, L., 1968, 180 pp. | MR

[9] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1974, 479 pp. | MR

[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1990, 432 pp. | MR

[11] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970, 351 pp. | MR

[12] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl

[13] Ben-Tal A., “Second order and related extremality conditions in nonlinear programming”, J. Optim. Theory Appl., 31:2 (1980), 143–165 | DOI | MR | Zbl

[14] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Programming Stud., 19 (1982), 39–76 | MR

[15] Bonnans J. F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optim., 9:2 (1999), 466–492 | DOI | MR | Zbl

[16] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, Berlin, 2000, 601 pp. | MR | Zbl

[17] Cambini R., Martein L., Vlach M., “Second order tangent sets and optimality conditions”, Math. Japon., 49:3 (1999), 451–461 | MR | Zbl

[18] Göpfert A., Riahi H., Tammer Chr., Zălinescu C., Variational methods in partially ordered spaces, Springer, New York, 2003, 365 pp. | MR | Zbl

[19] Ioffe A. D., “Necessary and sufficient conditions for a local minimum. III: Second order conditions and augmented duality”, SIAM J. Control Optim., 17:2 (1979), 266–288 | DOI | MR | Zbl

[20] Jameson G., Ordered linear spaces, Springer, Berlin, 1970, 194 pp. | MR | Zbl

[21] Jiménez B., Novo V., “Second order necessary conditions in set constrained differentiable vector optimization”, Math. Methods Oper. Res., 58:2 (2003), 299–317 | DOI | MR | Zbl

[22] Jiménez B., Novo V., “Optimality conditions in differentiable vector optimization via second-order tangent sets”, Appl. Math. Optim., 49:2 (2004), 123–144 | MR | Zbl

[23] Mordukhovich B. S., Variational analysis and generalized differentiation. V. I: Basic theory, Springer, Berlin et al., 2005, 1057 pp. | MR

[24] Penot J. P., “Second order conditions for optimization problems with constraints”, SIAM J. Control Optim., 37:1 (1999), 303–318 | DOI | MR | Zbl

[25] Peressini A. L., Ordered topologocal vector spaces, Harper and Row, New York, 1967, 228 pp. | MR | Zbl

[26] Rockafellar R. T., Wets R. J.-B., Variational analysis, Springer-Verlag, Berlin, 1998, 734 pp. | MR | Zbl

[27] Shapiro A., “Semi-infinite programming, duality, discretization and optimality conditions”, Optimization, 58:2 (2009), 133–161 | DOI | MR | Zbl