Voir la notice du chapitre de livre
Keywords: path, precedence conditions.
@article{TIMM_2009_15_4_a22,
author = {A. A. Chentsov and A. G. Chentsov and P. A. Chentsov},
title = {Iteration method in the routing problem with internal losses},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {270--289},
year = {2009},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a22/}
}
TY - JOUR AU - A. A. Chentsov AU - A. G. Chentsov AU - P. A. Chentsov TI - Iteration method in the routing problem with internal losses JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 270 EP - 289 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a22/ LA - ru ID - TIMM_2009_15_4_a22 ER -
A. A. Chentsov; A. G. Chentsov; P. A. Chentsov. Iteration method in the routing problem with internal losses. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 270-289. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a22/
[1] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Voprosy teorii”, Avtomatika i telemekhanika, 1989, no. 9, 3–34 | MR
[2] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Tochnye algoritmy”, Avtomatika i telemekhanika, 1989, no. 10, 3–29 | MR | Zbl
[3] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Priblizhennye algoritmy”, Avtomatika i telemekhanika, 1989, no. 11, 3–26 | MR | Zbl
[4] Bellman R., “Primenenie dinamicheskogo programmirovaniya k zadache o kommivoyazhere”, Kibernet. sb., 9, Mir, M., 1964, 219–228
[5] Kheld M., Karp R. M., “Primenenie dinamicheskogo programmirovaniya k zadacham uporyadocheniya”, Kibernet. sb., 9, Mir, M., 1964, 202–218
[6] Henry-Labordere A. L., “The record-balancing problem: a dynamic programming solution of a generalized travelling salesman problem”, R. I. R. O., 3:2 (1969), 43–49 | Zbl
[7] Laporte G., Nobert Y., “Generalized travelling salesman problem through $n$-sets of nodes: an integer programming approach”, INFOR, 21:1 (1983), 61–75 | Zbl
[8] Leiten A. K., “Nekotorye modifikatsii zadachi kommivoyazhera”, Tr. VTs Tart. un-ta, 28, 1973, 44–58 | MR
[9] Sergeev S. I., “Gibridnye sistemy upravleniya i dinamicheskaya zadacha kommivoyazhera”, Avtomatika i telemekhanika, 2008, no. 1, 45–54 | MR | Zbl
[10] Chentsov A. A., Chentsov A. G., “K voprosu o reshenii zadachi posledovatelnogo obkhoda mnozhestv s ispolzovaniem “nezamknutoi” zadachi kommivoyazhera”, Avtomatika i telemekhanika, 2002, no. 11, 151–166 | MR | Zbl
[11] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 238 pp.
[12] Chentsov A. A., Chentsov A. G., Chentsov P. A., “Obobschennaya versiya zadachi kurera”, Matematicheskii i prikladnoi analiz, Sb. nauchn. tr., Vyp. 2, Izd-vo Tyumen. gos. un-ta, Tyumen, 2005, 238–280
[13] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR
[14] Chentsov A. A., Chentsov A. G., “O realizatsii metoda dinamicheskogo programmirovaniya v obobschennoi zadache kurera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2008, 136–160
[15] Bellman R., Dinamicheskoe programmirovanie, IL, M., 1974, 432 pp.
[16] Bellman R., Kalaba R., Dinamicheskoe programmirovanie i osnovy sovremennoi teorii upravleniya, Nauka, M., 1969, 118 pp. | Zbl
[17] Chentsov A. A., Chentsov A. G., Chentsov P. A., “Ekstremalnaya zadacha marshrutizatsii s vnutrennimi poteryami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 183–201