On solving a pursuit game problem with fixed termination time
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 251-261
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A pursuit game problem for the first player with fixed termination time is considered. An approximate method is suggested for constructing the positional absorption set, which is the solvability set for the pursuit problem. Recurrence relations are written that define a system of sets approximating the positional absorption set in the phase space of the conflict-controlled system. A resolving control procedure with a guide is described, which copies the controls.
Keywords: game problem, control, differential game, differential inclusion, guide.
@article{TIMM_2009_15_4_a20,
     author = {V. N. Ushakov and D. K. Mikhalev and I. V. Baidosov},
     title = {On solving a~pursuit game problem with fixed termination time},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {251--261},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a20/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - D. K. Mikhalev
AU  - I. V. Baidosov
TI  - On solving a pursuit game problem with fixed termination time
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 251
EP  - 261
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a20/
LA  - ru
ID  - TIMM_2009_15_4_a20
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A D. K. Mikhalev
%A I. V. Baidosov
%T On solving a pursuit game problem with fixed termination time
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 251-261
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a20/
%G ru
%F TIMM_2009_15_4_a20
V. N. Ushakov; D. K. Mikhalev; I. V. Baidosov. On solving a pursuit game problem with fixed termination time. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 251-261. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a20/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., “Approksimatsiya v differentsialnykh igrakh”, Prikl. matematika i mekhanika, 37:2 (1973), 197–204 | MR

[3] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[4] Krasovskii N. N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, 24, UNTs AN SSSR, Sverdlovsk, 1977, 32–34 | MR

[5] Kurzhanskii A. B., “Alternirovannyi integral Pontryagina v teorii sinteza upravlenii”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 224, 1999, 234–248 | MR | Zbl

[6] Tarasev A. M., Ushakov V. N., Khripunov A. P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Prikl. matematika i mekhanika, 51:2 (1987), 216–222 | MR

[7] Ushakov V. N., Protsedury postroeniya stabilnykh mostov v differentsialnykh igrakh, dis. $\dots$ d-ra fiz.-mat. nauk, IMM UrO AN SSSR, Sverdlovsk, 1991, 308 pp.