Approximation and regularization properties of augmented penalty functions in convex programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 234-250
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The possibilities of using augmented penalty functions for the regularization and optimal correction of convex programming problems are investigated. Convergence conditions are formulated for the corresponding methods and an iteration algorithm for a linear optimization problem is proposed.
Keywords: convex programming, augmented penalty functions, improper problem, ill-posed problem, regularization method.
Mots-clés : optimal correction
@article{TIMM_2009_15_4_a19,
     author = {V. D. Skarin},
     title = {Approximation and regularization properties of augmented penalty functions in convex programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {234--250},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a19/}
}
TY  - JOUR
AU  - V. D. Skarin
TI  - Approximation and regularization properties of augmented penalty functions in convex programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 234
EP  - 250
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a19/
LA  - ru
ID  - TIMM_2009_15_4_a19
ER  - 
%0 Journal Article
%A V. D. Skarin
%T Approximation and regularization properties of augmented penalty functions in convex programming
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 234-250
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a19/
%G ru
%F TIMM_2009_15_4_a19
V. D. Skarin. Approximation and regularization properties of augmented penalty functions in convex programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 234-250. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a19/

[1] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR | Zbl

[2] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[3] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989, 400 pp. | MR

[4] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Izd-vo VNIISI, M., 1979, 74 pp.

[5] Skarin V. D., “Ob odnoi modifikatsii metoda shtrafnykh funktsii v vypuklom programmirovanii”, Nelineinaya optimizatsiya i prilozheniya v planirovanii, UNTs AN SSSR, Sverdlovsk, 1973, 51–62 | MR

[6] Eremin I. I., “Metod shtrafov v vypuklom programmirovanii”, DAN SSSR, 173:4 (1967), 748–751 | MR | Zbl

[7] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[8] Levitin E. S., “O korrektnosti ogranichenii i ustoichivosti v ekstremalnykh zadachakh”, Vest. Mosk. un-ta. Matematika. Mekhanika, 1968, no. 1, 24–34 | MR | Zbl

[9] Bertsekas D. P., “Multiplier methods: a survey”, Automatica, 12:2 (1976), 133–145 | DOI | MR | Zbl

[10] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[11] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR

[12] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[13] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR | Zbl

[14] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR

[15] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp. | MR