Functional-differential equations in the space of functions of bounded variation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 226-233
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For nonlinear systems of functional-differential equations with a generalized action on the right-hand side, the notion of a solution is formalized based on the closure of smooth solutions in the space of functions of bounded variation. Sufficient conditions are obtained for the existence and uniqueness of the solution. For linear systems with distributed delay and generalized action in the system matrix, conditions for the existence of a solution and the Cauchy formula for representing the solution are derived.
Keywords: generalized action, discontinuous solution, functional-differential equation, delay.
@article{TIMM_2009_15_4_a18,
     author = {A. N. Sesekin and Yu. V. Fetisova},
     title = {Functional-differential equations in the space of functions of bounded variation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--233},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/}
}
TY  - JOUR
AU  - A. N. Sesekin
AU  - Yu. V. Fetisova
TI  - Functional-differential equations in the space of functions of bounded variation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 226
EP  - 233
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/
LA  - ru
ID  - TIMM_2009_15_4_a18
ER  - 
%0 Journal Article
%A A. N. Sesekin
%A Yu. V. Fetisova
%T Functional-differential equations in the space of functions of bounded variation
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 226-233
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/
%G ru
%F TIMM_2009_15_4_a18
A. N. Sesekin; Yu. V. Fetisova. Functional-differential equations in the space of functions of bounded variation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 226-233. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/

[1] Kurzweil J., “Generalised Ordinary Differential Equations”, Czechosl. Math. J., 8:1 (1958), 360–388 | MR | Zbl

[2] Levin A. Yu., “Voprosy teorii obyknovennogo lineinogo uravneniya”, Vestn. Yaroslav. un-ta, 1974, no. 8, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 122–144

[3] Dmitriev M. G., “Differentsialnye sootnosheniya dlya nachalnogo skachka v odnoi singulyarno-vozmuschennoi zadache i ikh prilozheniya”, Dokl. AN SSR, 264:4 (1982), 804–806 | MR

[4] Miller B. M., “Optimizatsiya dinamicheskikh sistem s obobschennymi upravleniyami”, Avtomatika i telemekhanika, 1989, no. 6, 23–34 | Zbl

[5] Persson J., “Regularization of nonlinear measure differential equations”, Matematiche, 44:1 (1989), 113–130 | MR | Zbl

[6] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[7] Bressan A., Rampazzo F., “Impulsive control systems with commutative vector fields”, J. Optim. Theory Appl., 71:1 (1991), 67–83 | DOI | MR | Zbl

[8] Bressan A., Rampazzo F., “Impulsive control systems without commutativity assumptions”, J. Optim. Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl

[9] Zavalishchin S. T., Sesekin A. N., Dynamic impulse systems. Theory and applications, Kluwer Acad. Publ., Dordrecht, 1997, 268 pp. | MR | Zbl

[10] Krasovskii N. N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR

[11] Fetisova Y. V., Sesekin A. N., “Discontinuous solutions of differential equations with time delay”, WSEAS Transactions on Systems, 4:5 (2005), 487–492 | MR

[12] Anokhin A. V., “O lineinykh funktsionalno-differentsialnykh uravneniyakh s obobschennymi vozmuscheniyami”, Dokl. AN SSSR, 286:5 (1986), 1037–1040 | MR | Zbl

[13] Kim A. V., Pimenov V. G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2004, 256 pp.

[14] Kurzhanskii A. B., “O suschestvovanii reshenii uravnenii s posledeistviem”, Differents. uravneniya, 6:10 (1970), 1800–1809

[15] Lukoyanov N. Yu., Funktsionalnye uravneniya tipa Gamiltona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, avtoref. diss. $\dots$ d-ra fiz.-mat. nauk, Ekaterinburg, 2004, 32 pp.

[16] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976, 280 pp. | MR | Zbl

[17] Engelking R., Obschaya topologiya, Mir, M., 1986, 750 pp. | MR

[18] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp. | MR