Functional-differential equations in the space of functions of bounded variation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 226-233
Voir la notice de l'article provenant de la source Math-Net.Ru
For nonlinear systems of functional-differential equations with a generalized action on the right-hand side, the notion of a solution is formalized based on the closure of smooth solutions in the space of functions of bounded variation. Sufficient conditions are obtained for the existence and uniqueness of the solution. For linear systems with distributed delay and generalized action in the system matrix, conditions for the existence of a solution and the Cauchy formula for representing the solution are derived.
Keywords:
generalized action, discontinuous solution, functional-differential equation, delay.
@article{TIMM_2009_15_4_a18,
author = {A. N. Sesekin and Yu. V. Fetisova},
title = {Functional-differential equations in the space of functions of bounded variation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--233},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/}
}
TY - JOUR AU - A. N. Sesekin AU - Yu. V. Fetisova TI - Functional-differential equations in the space of functions of bounded variation JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 226 EP - 233 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/ LA - ru ID - TIMM_2009_15_4_a18 ER -
%0 Journal Article %A A. N. Sesekin %A Yu. V. Fetisova %T Functional-differential equations in the space of functions of bounded variation %J Trudy Instituta matematiki i mehaniki %D 2009 %P 226-233 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/ %G ru %F TIMM_2009_15_4_a18
A. N. Sesekin; Yu. V. Fetisova. Functional-differential equations in the space of functions of bounded variation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 226-233. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/