Functional-differential equations in the space of functions of bounded variation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 226-233

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonlinear systems of functional-differential equations with a generalized action on the right-hand side, the notion of a solution is formalized based on the closure of smooth solutions in the space of functions of bounded variation. Sufficient conditions are obtained for the existence and uniqueness of the solution. For linear systems with distributed delay and generalized action in the system matrix, conditions for the existence of a solution and the Cauchy formula for representing the solution are derived.
Keywords: generalized action, discontinuous solution, functional-differential equation, delay.
@article{TIMM_2009_15_4_a18,
     author = {A. N. Sesekin and Yu. V. Fetisova},
     title = {Functional-differential equations in the space of functions of bounded variation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--233},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/}
}
TY  - JOUR
AU  - A. N. Sesekin
AU  - Yu. V. Fetisova
TI  - Functional-differential equations in the space of functions of bounded variation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 226
EP  - 233
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/
LA  - ru
ID  - TIMM_2009_15_4_a18
ER  - 
%0 Journal Article
%A A. N. Sesekin
%A Yu. V. Fetisova
%T Functional-differential equations in the space of functions of bounded variation
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 226-233
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/
%G ru
%F TIMM_2009_15_4_a18
A. N. Sesekin; Yu. V. Fetisova. Functional-differential equations in the space of functions of bounded variation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 226-233. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a18/