On one problem of tracking a given trajectory
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 195-203
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A controlled system nonlinear in phase variables is considered. Under the assumption that the system is subject to an uncontrollable disturbance, an algorithm of forming the control is specified such that a given trajectory is tracked.
Keywords: controlled system, disturbance.
@article{TIMM_2009_15_4_a15,
     author = {V. I. Maksimov},
     title = {On one problem of tracking a~given trajectory},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {195--203},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a15/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On one problem of tracking a given trajectory
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 195
EP  - 203
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a15/
LA  - ru
ID  - TIMM_2009_15_4_a15
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On one problem of tracking a given trajectory
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 195-203
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a15/
%G ru
%F TIMM_2009_15_4_a15
V. I. Maksimov. On one problem of tracking a given trajectory. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 195-203. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a15/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N. N., Subbotin N. N., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Afanasev V. N., Kolmanovskii V. B., Nosov V. R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vyssh. shk., M., 1989, 448 pp. | MR

[4] Kryazhimskii A. V., Osipov Yu. S., “Obratnye zadachi dinamiki i upravlyaemye modeli”, Mekhanika i nauch.-tekhn. progress. T. 1: Obschaya i prikladnaya mekhanika, Nauka, M., 1987, 196–211 | MR

[5] Maksimov V. I., “O kompensatsii vozmuschenii v nelineinykh upravlyaemykh sistemakh”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 62–68 | MR | Zbl

[6] Maksimov V. I., “Pozitsionnoe modelirovanie neogranichennykh upravlenii dlya nelineinykh sistem s dissipatsiei”, Avtomatika i telemekhanika, 1988, no. 4, 22–30 | MR | Zbl

[7] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1983, no. 2, 51–60 | MR

[8] Kryazhimskii A. V., Osipov Yu. S., Inverse problems for ordinary differential equations: dynamical solution, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[9] Maksimov V., Pandolfi L., “On a dynamical identification of controls in nonlinear time-lag systems”, IMA J. Math. Contr. Inform., 19:1–2 (2002), 173–184 | DOI | MR | Zbl

[10] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR