Voir la notice du chapitre de livre
@article{TIMM_2009_15_4_a14,
author = {N. Yu. Lukoyanov},
title = {Minimax and viscosity solutions in optimization problems for hereditary systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {183--194},
year = {2009},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/}
}
N. Yu. Lukoyanov. Minimax and viscosity solutions in optimization problems for hereditary systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 183-194. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/
[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR
[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[3] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl
[4] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl
[5] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp. | MR
[6] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamical solutions, Gordon and Breach, Amsterdam, 1995, 625 pp. | MR | Zbl
[7] Krasovskii N. N., “O primenenii vtorogo metoda A. M. Lyapunova dlya uravnenii s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 20:3 (1956), 315–327 | MR
[8] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR
[9] Osipov Yu. S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl
[10] Kurzhanskii A. B., “Differentsialnye igry sblizheniya v sistemakh s zapazdyvaniem”, Differents. uravneniya, 7:8 (1971), 1398–1409
[11] Kim A. V., Functional differential equations. application of $i$-smooth calculus, Kluwer, Dordrecht, 1999, 165 pp. | MR
[12] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR
[13] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl
[14] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston etc., 1995, 312 pp. | MR
[15] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[16] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282 (1984), 487–502 | DOI | MR | Zbl
[17] Lions P.-L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs's equations”, SIAM J. Contr. Optim., 23:4 (1985), 566–583 | DOI | MR | Zbl
[18] Subbotin A. I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl
[19] Berkovitz L. D., “Optimal feedback control”, SIAM J. Contr. Optim., 27 (1989), 991–1006 | DOI | MR | Zbl
[20] Vinter R. B., Wolenski P. R., “Hamilton–Jacobi theory for control problems with data measurable in time”, SIAM J. Contr. Optim., 28 (1990), 1404–1419 | DOI | MR | Zbl
[21] Soner H. M., “On the Hamilton–Jacobi–Bellman equations in Banach spaces”, J. Optim. Theory Appl., 57:3 (1988), 429–437 | DOI | MR | Zbl
[22] Barron E. N., “Application of viscosity solutions of infinite–dimensional Hamilton–Jacobi–Bellman equations to some problems in distributed optimal control”, J. Optim. Theory Appl., 64:2 (1990), 245–268 | DOI | MR | Zbl
[23] Wolenski P. R., “Hamilton–Jacobi theory for hereditary control problems”, Nonlinear Anal., 22:7 (1994), 875–894 | DOI | MR | Zbl
[24] Lukoyanov N. Yu., “Functional Hamilton–Jacobi type equations in $ci$-derivatives for systems with distributed delays”, Nonlinear Funct. Anal. Appl., 8:3 (2003), 365–397 | MR | Zbl
[25] Lukoyanov N. Yu., “Functional Hamilton–Jacobi type equations with $ci$-derivatives in control problems with hereditary information”, Nonlinear Funct. Anal. Appl., 8:4 (2003), 535–555 | MR | Zbl
[26] Lukoyanov N. Yu., “O vyazkostnom reshenii funktsionalnykh uravnenii tipa Gamiltona–Yakobi dlya nasledstvennykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, Ekaterinburg, 2007, 135–144
[27] Kurzhanskii A. B. O suschestvovanii reshenii uravnenii s posledeistviem, Differents. uravneniya, 6:10 (1970), 1800–1809
[28] Kim A. V., “Ko vtoromu metodu Lyapunova dlya sistem s posledeistviem”, Differents. uravneniya, 21:3 (1985), 385–391 | MR | Zbl
[29] Aubin J. P., Haddad G., “History path dependent optimal control and portfolio valuation and management”, Positivity, 6:3 (2002), 331–358 | DOI | MR | Zbl
[30] Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972, 531 pp. | MR | Zbl
[31] Lukoyanov N. Yu., “Strategii pritselivaniya v napravlenii invariantnykh gradientov”, Prikl. matematika i mekhanika, 68:4 (2004), 629–643 | MR | Zbl
[32] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala”, Mat. sb., 98(140):3 (1975), 450–493 | MR | Zbl
[33] Crandall M. G., Lions P.-L., “Hamilton–Jacobi equations in infinite dimensions, Part IV: Hamiltonians with unbounded linear terms”, J. Funct. Anal., 90 (1990), 237–283 | DOI | MR | Zbl