Minimax and viscosity solutions in optimization problems for hereditary systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 183-194
Voir la notice de l'article provenant de la source Math-Net.Ru
For a dynamical system with discrete and distributed time delays, a control problem under disturbance or counteraction is considered. The problem is formalized in the context of the game-theoretical approach in the class of control strategies with memory. The problem is associated with a functional Hamilton–Jacobi type equation with coinvariant derivatives. The minimax and viscosity approaches to a generalized solution of this equation are discussed. It is shown that, under the same condition at the right endpoint, the minimax and viscosity solutions coincide, thereby uniquely defining the functional of optimal guaranteed result in the control problem
Keywords:
optimal control, differential games, time-delay systems, Hamilton–Jacobi equations, minimax solution, viscosity solution.
@article{TIMM_2009_15_4_a14,
author = {N. Yu. Lukoyanov},
title = {Minimax and viscosity solutions in optimization problems for hereditary systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {183--194},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/}
}
TY - JOUR AU - N. Yu. Lukoyanov TI - Minimax and viscosity solutions in optimization problems for hereditary systems JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 183 EP - 194 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/ LA - ru ID - TIMM_2009_15_4_a14 ER -
N. Yu. Lukoyanov. Minimax and viscosity solutions in optimization problems for hereditary systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 183-194. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/