Minimax and viscosity solutions in optimization problems for hereditary systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 183-194
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a dynamical system with discrete and distributed time delays, a control problem under disturbance or counteraction is considered. The problem is formalized in the context of the game-theoretical approach in the class of control strategies with memory. The problem is associated with a functional Hamilton–Jacobi type equation with coinvariant derivatives. The minimax and viscosity approaches to a generalized solution of this equation are discussed. It is shown that, under the same condition at the right endpoint, the minimax and viscosity solutions coincide, thereby uniquely defining the functional of optimal guaranteed result in the control problem
Keywords: optimal control, differential games, time-delay systems, Hamilton–Jacobi equations, minimax solution, viscosity solution.
@article{TIMM_2009_15_4_a14,
     author = {N. Yu. Lukoyanov},
     title = {Minimax and viscosity solutions in optimization problems for hereditary systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {183--194},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
TI  - Minimax and viscosity solutions in optimization problems for hereditary systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 183
EP  - 194
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/
LA  - ru
ID  - TIMM_2009_15_4_a14
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%T Minimax and viscosity solutions in optimization problems for hereditary systems
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 183-194
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/
%G ru
%F TIMM_2009_15_4_a14
N. Yu. Lukoyanov. Minimax and viscosity solutions in optimization problems for hereditary systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 183-194. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a14/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[4] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[5] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp. | MR

[6] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamical solutions, Gordon and Breach, Amsterdam, 1995, 625 pp. | MR | Zbl

[7] Krasovskii N. N., “O primenenii vtorogo metoda A. M. Lyapunova dlya uravnenii s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 20:3 (1956), 315–327 | MR

[8] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[9] Osipov Yu. S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl

[10] Kurzhanskii A. B., “Differentsialnye igry sblizheniya v sistemakh s zapazdyvaniem”, Differents. uravneniya, 7:8 (1971), 1398–1409

[11] Kim A. V., Functional differential equations. application of $i$-smooth calculus, Kluwer, Dordrecht, 1999, 165 pp. | MR

[12] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[13] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl

[14] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhäuser, Boston etc., 1995, 312 pp. | MR

[15] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[16] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 282 (1984), 487–502 | DOI | MR | Zbl

[17] Lions P.-L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs's equations”, SIAM J. Contr. Optim., 23:4 (1985), 566–583 | DOI | MR | Zbl

[18] Subbotin A. I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl

[19] Berkovitz L. D., “Optimal feedback control”, SIAM J. Contr. Optim., 27 (1989), 991–1006 | DOI | MR | Zbl

[20] Vinter R. B., Wolenski P. R., “Hamilton–Jacobi theory for control problems with data measurable in time”, SIAM J. Contr. Optim., 28 (1990), 1404–1419 | DOI | MR | Zbl

[21] Soner H. M., “On the Hamilton–Jacobi–Bellman equations in Banach spaces”, J. Optim. Theory Appl., 57:3 (1988), 429–437 | DOI | MR | Zbl

[22] Barron E. N., “Application of viscosity solutions of infinite–dimensional Hamilton–Jacobi–Bellman equations to some problems in distributed optimal control”, J. Optim. Theory Appl., 64:2 (1990), 245–268 | DOI | MR | Zbl

[23] Wolenski P. R., “Hamilton–Jacobi theory for hereditary control problems”, Nonlinear Anal., 22:7 (1994), 875–894 | DOI | MR | Zbl

[24] Lukoyanov N. Yu., “Functional Hamilton–Jacobi type equations in $ci$-derivatives for systems with distributed delays”, Nonlinear Funct. Anal. Appl., 8:3 (2003), 365–397 | MR | Zbl

[25] Lukoyanov N. Yu., “Functional Hamilton–Jacobi type equations with $ci$-derivatives in control problems with hereditary information”, Nonlinear Funct. Anal. Appl., 8:4 (2003), 535–555 | MR | Zbl

[26] Lukoyanov N. Yu., “O vyazkostnom reshenii funktsionalnykh uravnenii tipa Gamiltona–Yakobi dlya nasledstvennykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, Ekaterinburg, 2007, 135–144

[27] Kurzhanskii A. B. O suschestvovanii reshenii uravnenii s posledeistviem, Differents. uravneniya, 6:10 (1970), 1800–1809

[28] Kim A. V., “Ko vtoromu metodu Lyapunova dlya sistem s posledeistviem”, Differents. uravneniya, 21:3 (1985), 385–391 | MR | Zbl

[29] Aubin J. P., Haddad G., “History path dependent optimal control and portfolio valuation and management”, Positivity, 6:3 (2002), 331–358 | DOI | MR | Zbl

[30] Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972, 531 pp. | MR | Zbl

[31] Lukoyanov N. Yu., “Strategii pritselivaniya v napravlenii invariantnykh gradientov”, Prikl. matematika i mekhanika, 68:4 (2004), 629–643 | MR | Zbl

[32] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala”, Mat. sb., 98(140):3 (1975), 450–493 | MR | Zbl

[33] Crandall M. G., Lions P.-L., “Hamilton–Jacobi equations in infinite dimensions, Part IV: Hamiltonians with unbounded linear terms”, J. Funct. Anal., 90 (1990), 237–283 | DOI | MR | Zbl