Numerical construction of Nash and Stackelberg solutions in a two-player linear nonantagonistic positional differential game
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 120-133
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Numerical methods are proposed for constructing Nash and Stackelberg solutions in a two-player linear nonantagonistic positional differ rential game with terminal quality indices and geometric constraints on the players' controls. The formalization of the players' strategies and of the motions generated by them is based on the formalization and results from the theory of positional antagonistic differential games developed by N. N. Krasovskii and his school. It is assumed that the game is reduced to a plane game and the constraints on the players' controls are given in the form of convex polygons. The problem of finding solutions of the game is reduced to solving nonstandard optimal control problems. For the construction of approximate trajectories in these problems, several computational geometry algorithms are used, in particular, the algorithms for constructing the convex hull, the union and intersection of polygons, and the algebraic sum of polygons.
Keywords: nonantagonistic positional differential game, Nash solution, Stackelberg solution, numerical algorithm.
@article{TIMM_2009_15_4_a10,
     author = {A. F. Kleimenov and D. R. Kuvshinov and S. I. Osipov},
     title = {Numerical construction of {Nash} and {Stackelberg} solutions in a~two-player linear nonantagonistic positional differential game},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--133},
     year = {2009},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a10/}
}
TY  - JOUR
AU  - A. F. Kleimenov
AU  - D. R. Kuvshinov
AU  - S. I. Osipov
TI  - Numerical construction of Nash and Stackelberg solutions in a two-player linear nonantagonistic positional differential game
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 120
EP  - 133
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a10/
LA  - ru
ID  - TIMM_2009_15_4_a10
ER  - 
%0 Journal Article
%A A. F. Kleimenov
%A D. R. Kuvshinov
%A S. I. Osipov
%T Numerical construction of Nash and Stackelberg solutions in a two-player linear nonantagonistic positional differential game
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 120-133
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a10/
%G ru
%F TIMM_2009_15_4_a10
A. F. Kleimenov; D. R. Kuvshinov; S. I. Osipov. Numerical construction of Nash and Stackelberg solutions in a two-player linear nonantagonistic positional differential game. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 4, pp. 120-133. http://geodesic.mathdoc.fr/item/TIMM_2009_15_4_a10/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[3] Başar T., Olsder G. J., Dynamic noncooperative game theory, Acad. Press, New York, 1999, 519 pp. | MR

[4] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 184 pp. | MR

[5] Vakhrushev V. A., Tarasev A. M., Ushakov V. N., “Algoritmy postroeniya peresecheniya i ob'edineniya mnozhestv na ploskosti”, Upravlenie s garantirovannym rezultatom, IMM UNTs AN SSSR, Sverdlovsk, 1987, 28–36

[6] Isakova E. A., Logunova G. V., Patsko V. S., “Postroenie stabilnykh mostov v lineinoi differentsialnoi igre s fiksirovannym momentom okonchaniya”, Algoritmy i programmy resheniya lineinykh differentsialnykh igr, materialy po matematicheskomu obespecheniyu EVM, IMM UNTs AN SSSR, Sverdlovsk, 1984, 127–158

[7] Osipov S. I., “O realizatsii algoritma postroeniya reshenii dlya klassa ierarkhicheskikh igr Shtakelberga”, Avtomatika i telemekhanika, 2007, no. 11, 195–208 | MR

[8] Kleimenov A. F., Osipov S. I., Cherepov A. S., Kuvshinov D. R., “Chislennoe reshenie odnoi ierarkhicheskoi differentsialnoi igry dvukh lits”, Izv. Ural. gos. un-ta, 2006, no. 46, Matematika. Mekhanika. Informatika. Vyp. 10, 160–170

[9] Kleimenov A. F., “O resheniyakh v neantagonisticheskoi pozitsionnoi differentsialnoi igre”, Prikl. matematika i mekhanika, 61:5 (1997), 717–723 | MR

[10] Computational Geometry Algorithms Library, http://www.cgal.org/