Construction of nonlinear regulators in economic growth models
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 127-138
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An infinite horizon optimal control problem is considered which arises in an economic growth model with exhaustible energy resources. The Hamiltonian system in the Pontryagin maximum principle is analyzed and nonlinear regulators are constructed for the dynamical system under consideration. The presented results of synthetic economic growth trajectories generated by nonlinear regulators of the system are based on real data.
Keywords: nonlinear control systems, optimal stabilization, economic modeling.
@article{TIMM_2009_15_3_a9,
     author = {A. A. Krasovskii and A. M. Taras'ev},
     title = {Construction of nonlinear regulators in economic growth models},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--138},
     year = {2009},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a9/}
}
TY  - JOUR
AU  - A. A. Krasovskii
AU  - A. M. Taras'ev
TI  - Construction of nonlinear regulators in economic growth models
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 127
EP  - 138
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a9/
LA  - ru
ID  - TIMM_2009_15_3_a9
ER  - 
%0 Journal Article
%A A. A. Krasovskii
%A A. M. Taras'ev
%T Construction of nonlinear regulators in economic growth models
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 127-138
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a9/
%G ru
%F TIMM_2009_15_3_a9
A. A. Krasovskii; A. M. Taras'ev. Construction of nonlinear regulators in economic growth models. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 127-138. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a9/

[1] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Airis-Press, M., 2002, 566 pp.

[2] Arrow K. J., Production and capital: collected papers, Vol. 5, The Belknap Press of Harvard University Press, Cambridge, MA–London, 1985, 496 pp. | MR

[3] Kantorovich L. V., Makarov V. L., “Growth models and their application to long-term planning and forecasting”, Long-term planning and forecasting, Proc. conf., Macmillan Press, London, 1976

[4] Shell K., “Applications of Pontryagin's maximum principle to economics”, Math. Systems Theory and Economics, 1 (1969), 241–292 | MR | Zbl

[5] Solow R. M., Growth theory: an exposition, Oxford University Press, New York, 1970, 224 pp.

[6] Ayres R. U., Martinas K., On the reappraisal of microeconomics: Economic growth and change in a material world, Edward Elgar Publishing Ltd., Cheltenham, 2005, 200 pp.

[7] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 391 pp. | Zbl

[8] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 5–271 | MR | Zbl

[9] Balder E. J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95 (1983), 195–213 | DOI | MR | Zbl

[10] Krasovskii A. A., Tarasev A. M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | MR | Zbl

[11] Tarasyev A. M., Watanabe C., “Dynamic optimality principles and sensitivity analysis in models of economic growth”, Nonlinear Analysis, 47:4 (2001), 2309–2320 | DOI | MR | Zbl

[12] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[13] Letov A. M., “Analiticheskoe konstruirovanie regulyatorov. IV”, Avtomatika i telemekhanika, 22:4 (1961), 425–435 | MR | Zbl

[14] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 530 pp. | MR | Zbl

[15] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl