Contraction mapping
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 106-115

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider (uniform, $M$-Fejér, etc.) contraction mappings with the aim of constructing iterative methods for systems of linear and convex inequalities, problems of linear and convex programming, matrix games, and approximation optimization problems.
Keywords: linear and convex programming, contraction mappings, fixed point set, projection operator.
Mots-clés : Fejér processes
@article{TIMM_2009_15_3_a7,
     author = {I. I. Eremin},
     title = {Contraction mapping},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a7/}
}
TY  - JOUR
AU  - I. I. Eremin
TI  - Contraction mapping
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 106
EP  - 115
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a7/
LA  - ru
ID  - TIMM_2009_15_3_a7
ER  - 
%0 Journal Article
%A I. I. Eremin
%T Contraction mapping
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 106-115
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a7/
%G ru
%F TIMM_2009_15_3_a7
I. I. Eremin. Contraction mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 106-115. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a7/