Contraction mapping
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 106-115
Voir la notice du chapitre de livre
We consider (uniform, $M$-Fejér, etc.) contraction mappings with the aim of constructing iterative methods for systems of linear and convex inequalities, problems of linear and convex programming, matrix games, and approximation optimization problems.
Keywords:
linear and convex programming, contraction mappings, fixed point set, projection operator.
Mots-clés : Fejér processes
Mots-clés : Fejér processes
@article{TIMM_2009_15_3_a7,
author = {I. I. Eremin},
title = {Contraction mapping},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {106--115},
year = {2009},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a7/}
}
I. I. Eremin. Contraction mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 106-115. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a7/
[1] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl
[2] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 228 pp. | MR
[3] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.
[4] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa (teoriya i prilozheniya), NITs “Regulyar. i khaotich. dinamika”, M.–Izhevsk, 2005, 199 pp. | MR