Analysis of coordinate and other transformations of models of dynamical systems by the reduction method
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 38-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The issues of preserving dynamic properties when passing from a system of differential equations to another system obtained by a change of variables are considered, as well as issues of preserving the properties in the opposite direction. The possibilities of the reduction method, which was proposed earlier, in resolving these questions are demonstrated by the examples of such properties as stability, attraction, and dissipativity. Similar questions are investigated for the case when the second system is obtained by a way characteristic for the comparison method with vector Lyapunov functions. The application of one of the obtained dissipativity criteria to analyzing the nonlinear dynamics of a group of moving objects is considered.
Keywords: differential equations, stability, dissipativity, reduction method, vector Lyapunov functions, group control, formation stability.
Mots-clés : coordinate transformations
@article{TIMM_2009_15_3_a3,
     author = {S. N. Vassilyev and R. I. Kozlov and S. A. Ul'yanov},
     title = {Analysis of coordinate and other transformations of models of dynamical systems by the reduction method},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {38--55},
     year = {2009},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a3/}
}
TY  - JOUR
AU  - S. N. Vassilyev
AU  - R. I. Kozlov
AU  - S. A. Ul'yanov
TI  - Analysis of coordinate and other transformations of models of dynamical systems by the reduction method
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 38
EP  - 55
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a3/
LA  - ru
ID  - TIMM_2009_15_3_a3
ER  - 
%0 Journal Article
%A S. N. Vassilyev
%A R. I. Kozlov
%A S. A. Ul'yanov
%T Analysis of coordinate and other transformations of models of dynamical systems by the reduction method
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 38-55
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a3/
%G ru
%F TIMM_2009_15_3_a3
S. N. Vassilyev; R. I. Kozlov; S. A. Ul'yanov. Analysis of coordinate and other transformations of models of dynamical systems by the reduction method. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 38-55. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a3/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Fizmatlit, M., 1935, 320 pp.

[2] Chetaev N. G., Ustoichivost dvizheniya, Fizmatlit, M., 1965, 208 pp.

[3] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR

[4] Krasovskii N. N., “Vtoroi metod Lyapunova v teorii ustoichivosti dvizheniya”, Tr. Vsesoyuz. s'ezda po teor. i prikl. mekhanike, AN SSSR, M., 1962, 36–47

[5] Rumyantsev V. V., “Metod funktsii Lyapunova v teorii ustoichivosti”, Mekhanika v SSSR za 50 let. T. 1. Obschaya i prikladnaya mekhanika, Sb. st., Nauka, M., 1968, 7–66

[6] Zubov V. I., Metody A. M. Lyapunova i ikh primenenie, LGU, L., 1957, 239 pp.

[7] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR | Zbl

[8] Anapolskii L. Yu., Irtegov V. D., Matrosov V. M., “Sposoby postroeniya funktsii Lyapunova”, Itogi nauki i tekhniki. Obschaya mekhanika, 2, VINITI, M., 1975, 53–112 | MR

[9] Matrosov V. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980, 480 pp.

[10] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 300 pp. | MR

[11] Michel A. N., Wang K., Hu B., Qualitative theory of dynamical systems. The role of stability – preserving mappings, Marcel Dekker, New York, 2000, 708 pp. | MR

[12] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.

[13] Matrosov V. M., “Metod sravneniya v dinamike sistem. I”, Differents. uravneniya, 10:9 (1974), 1547–1559 ; “II”, 11:3 (1975), 403–417 | MR | Zbl | Zbl

[14] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 480 pp.

[15] Thomas J., “Uber die invarianz der stabilitat bei einem phasenraum-homoomorphismus”, J. Reine Angew. Math., 213 (1964), 147–150 | MR | Zbl

[16] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971, 240 pp. | MR

[17] Zhuravlev V. F., Osnovy teoreticheskoi mekhaniki, Fizmatlit, M., 2001, 320 pp. | MR

[18] Kavinov A. V., Krischenko A. P., “Ustoichivost reshenii v raznykh peremennykh”, Differents. uravneniya, 43:11 (2007), 1470–1473 | MR

[19] Vasilev S. N., “Metod reduktsii i kachestvennyi analiz dinamicheskikh sistem. I”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 21–29

[20] V. M. Matrosov, S. N. Vasilev, R. I. Kozlov i dr., Algoritmy vyvoda teorem metoda vektornykh funktsii Lyapunova, Nauka, Novosibirsk, 1981, 271 pp.

[21] Vasilev S. N., “Metod sravneniya v analize sistem. I”, Differents. uravneniya, 17:9 (1981), 1562–1573 ; “II”, 17:11 (1981), 1545–1554 ; “III”, 18:2 (1982), 197–205 ; “IV”, 18:6 (1982), 938–947 | MR | MR | MR

[22] Kozlov R. I., Teoriya sistem sravneniya v metode vektornykh funktsii Lyapunova, Nauka, Novosibirsk, 2001, 137 pp. | MR

[23] Vasilev S. N., Gulyamov Sh. B., Sistema avtomaticheskogo sinteza teorem AST, Svidetelstvo ob ofitsial. registratsii programmy dlya EVM No 2005610836 ot 11.04.2005

[24] Vasilev S. N., Ulyanov S. A., Programmnyi modul dlya analiza logiko-dinamicheskikh modelei avtomatnogo tipa, Svidetelstvo ob ofitsial. registratsii programmy dlya EVM No 2006610937 ot 13.03.2006

[25] Vasilev S. N., Ulyanov S. A., Programmnyi modul dlya postroeniya redutsirovannykh logiko-dinamicheskikh modelei avtomatnogo tipa, Svidetelstvo ob ofitsial. registratsii programmy dlya EVM No 2006610938 ot 13.03.2006

[26] Kozlov R. I., Ulyanov S. A., Khmelnov A. E., Programmnyi modul dlya kachestvennogo issledovaniya nepreryvnykh dinamicheskikh sistem VFL-REDUKTOR-N, Svidetelstvo ob ofitsial. registratsii programmy dlya EVM No 2007613832 ot 07.09.2007

[27] Kozlov R. I., Ulyanov S. A., Khmelnov A. E., Programmnyi modul dlya kachestvennogo issledovaniya nepreryvno-diskretnykh dinamicheskikh sistem VFL-REDUKTOR-ND, Svidetelstvo ob ofitsial. registratsii programmy dlya EVM No 2007613833 ot 07.09.2007

[28] Yoshizawa T., Stability theory by Liapunov's second method, The Math. Soc. of Japan, Tokyo, 1966, 223 pp. | MR | Zbl

[29] Yoshizawa T., “Lyapunov's function and boundedness of solutions”, Funkcial. Ekvac., 1959, no. 2, 95–142 | MR | Zbl

[30] Germaidze V. E., Krasovskii N. N., “Ob ustoichivosti pri postoyanno deistvuyuschikh vozmuscheniyakh”, Prikl. matematika i mekhanika, 21:6 (1957), 769–775 | MR

[31] Tanner H. G., Pappas G. J., Kumar V., “Leader-to-formation stability”, IEEE Trans. Robot. Automat., 20:3 (2004), 443–455 | DOI

[32] Fax J. A., Murray R. M., “Information flow and cooperative control of vehicle formations”, IEEE Trans. Automat. Control, 49:9 (2004), 1465–1476 | DOI | MR