On one nonlinear problem of sequential approach of a controlled object to two evading points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 29-37
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a problem in which a pursuer described by a nonlinear third-order system aims to sequentially approach two points moving along straight lines in a minimal time. The points aim to increase the approach time as much as possible by choosing their directions of motion.
Keywords: control, pursuer, evaders, sequential approach.
@article{TIMM_2009_15_3_a2,
     author = {Yu. I. Berdyshev},
     title = {On one nonlinear problem of sequential approach of a~controlled object to two evading points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {29--37},
     year = {2009},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a2/}
}
TY  - JOUR
AU  - Yu. I. Berdyshev
TI  - On one nonlinear problem of sequential approach of a controlled object to two evading points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 29
EP  - 37
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a2/
LA  - ru
ID  - TIMM_2009_15_3_a2
ER  - 
%0 Journal Article
%A Yu. I. Berdyshev
%T On one nonlinear problem of sequential approach of a controlled object to two evading points
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 29-37
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a2/
%G ru
%F TIMM_2009_15_3_a2
Yu. I. Berdyshev. On one nonlinear problem of sequential approach of a controlled object to two evading points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 29-37. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a2/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[3] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii s ogranichennymi fazovymi koordinatami”, Prikl. matematika i mekhanika, 32:2 (1968), 196–203 | MR

[4] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii pri stesnennykh ogranicheniyakh”, Prikl. matematika i mekhanika, 33:4 (1969), 705–719 | MR

[5] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhäuser, Basel, 1995, 320 pp. | MR

[6] Krasovskii N. N., Lukoyanov N. Yu., “Zadacha konfliktnogo upravleniya s nasledstvennoi informatsiei”, Prikl. matematika i mekhanika, 60:6 (1996), 885–900 | MR

[7] Berdyshev Yu. I., Chentsov A. G., “Optimizatsiya vzveshennogo kriteriya v odnoi zadache upravleniya”, Kibernetika, 1986, no. 1, 59–64 | MR | Zbl

[8] Morina S. I., Chentsov A. G., Zadacha posledovatelnogo sblizheniya pri kombinirovannykh ogranicheniyakh na vybor upravlenii, Dep. v VINITI 02.09.87, No 6461-V87, In-t matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1987, 27 pp.

[9] Berdyshev Yu. I., “Ob odnoi zadache posledovatelnogo sblizheniya nelineinoi upravlyaemoi sistemy tretego poryadka s gruppoi dvizhuschikhsya tochek”, Prikl. matematika i mekhanika, 66:5 (2002), 742–752 | MR | Zbl

[10] Berdyshev Yu. I., “O zadache posledovatelnogo obkhoda odnim nelineinym ob'ektom dvukh dvizhuschikhsya tochek”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 1, Ekaterinburg, 2005, 43–52 | MR | Zbl

[11] Berdyshev Yu. I., “O postroenii oblasti dostizhimosti v odnoi nelineinoi zadache”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 4, 22–26 | MR

[12] Berdyshev Yu. I., “Ob odnoi nelineinoi zadache posledovatelnogo upravleniya s parametrom”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 38–43 | MR

[13] Berdyshev Yu. I., “O zadache posledovatelnogo obkhoda odnim nelineinym ob'ektom dvukh dvizhuschikhsya tochek”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, Ekaterinburg, 2008, 43–52

[14] Aizeks R., Differentsialnye igry, Mir, M., 1967, 497 pp. | MR

[15] Dubins L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79 (1957), 497–516 | DOI | MR | Zbl

[16] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[17] Cockayne E., “Plane pursuit with curvature constraints”, SIAM J. Appl. Math., 15:6 (1967), 197–220 | DOI | MR

[18] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–11 | MR

[19] Khamza M. Kh., Kolas I., Rungalder V., “Optimalnye po bystrodeistviyu traektorii poleta v zadache presledovaniya”, Upravlenie kosmicheskimi apparatami i korablyami, Nauka, M., 1971, 410–418

[20] Pesvaradi T., “Optimal horizontal quidance law for Aircraft in the terminal area”, IEEE Trans. Automat. Control., 17:6 (1972), 763–772 | DOI | MR

[21] Berdyshev Yu. I., “Sintez optimalnogo po bystrodeistviyu upravleniya dlya odnoi nelineinoi sistemy chetvertogo poryadka”, Prikl. matematika i mekhanika, 39:6 (1975), 985–994 | MR | Zbl

[22] Chikrii A. A., Kalashnikova S. F. \, “Presledovanie upravlyaemym ob'ektom gruppy ubegayuschikh”, Kibernetika, 1987, no. 4, 1–8 | MR

[23] Petrosyan L. A., Tomskii G. V., Geometriya prostogo presledovaniya, Nauka, Novosibirsk, 1983, 143 pp. | MR

[24] Ivanov M. N., Maslov E. P., “O sravnenii dvukh metodov presledovaniya v zadache o poocherednoi vstreche”, Avtomatika i telemekhanika, 1983, no. 7, 38–43 | Zbl