Voir la notice du chapitre de livre
@article{TIMM_2009_15_3_a14,
author = {N. N. Subbotina and E. A. Kolpakova},
title = {On the structure of locally {Lipschitz} minimax solutions of the {Hamilton{\textendash}Jacobi{\textendash}Bellman} equation in terms of classical characteristics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {202--218},
year = {2009},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a14/}
}
TY - JOUR AU - N. N. Subbotina AU - E. A. Kolpakova TI - On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 202 EP - 218 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a14/ LA - ru ID - TIMM_2009_15_3_a14 ER -
%0 Journal Article %A N. N. Subbotina %A E. A. Kolpakova %T On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics %J Trudy Instituta matematiki i mehaniki %D 2009 %P 202-218 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a14/ %G ru %F TIMM_2009_15_3_a14
N. N. Subbotina; E. A. Kolpakova. On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 202-218. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a14/
[1] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 336 pp.
[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp. | MR
[3] Bellman R., Dinamicheskoe programmirovanie, IL, M., 1960, 400 pp. | MR
[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 392 pp. | MR | Zbl
[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[7] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, Dokl. AN SSSR, 95:3 (1954), 451–454 | MR
[8] Tikhonov A. N., Samarskii A. A., “O razryvnykh resheniyakh kvazilineinogo uravneniya pervogo poryadka”, Dokl. AN SSSR, 99:1 (1954), 27–30 | Zbl
[9] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81(123):2 (1970), 228–255 | MR | Zbl
[10] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Kvazilineinye uravneniya s chastnymi proizvodnymi pervogo poryadka: obobschennye resheniya, udarnye volny, tsentrirovannye volny razrezheniya, Izd-vo MGU, M., 1994, 96 pp.
[11] Clarke F. N., Optimization and nonsmooth analysis, Wiley, New York, 1983, 293 pp. | MR | Zbl
[12] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 20 (2004), 2955–3091 | MR
[13] Kolpakova E. A., “Otsenki chislennoi approksimatsii optimalnogo rezultata dlya odnogo klassa singulyarno vozmuschennykh zadach optimalnogo upravleniya”, Problemy teoreticheskoi i prikladnoi matematiki, Tr. 39-i Vseros. molodezh. konf., 2008, 265–269
[14] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton–Jacobi Equations”, Trans. Amer. Math. Soc., 282 (1984), 487–502 | DOI | MR | Zbl
[15] Rockafellar R. T., Wets R. J.-B., Variational Analysis, Springer, New York, 1998, 734 pp. | MR | Zbl
[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i integralnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[17] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 444 pp. | MR