Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 185-201
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The known theorems by E. A. Barbashin and N. N. Krasovskii (1952) about the asymptotic and global stability of an equilibrium state for an autonomous system of differential equations are extended to nonautonomous differential inclusions with closed-valued (but not necessarily compact-valued) right-hand sides, where the equilibrium state is a weakly invariant (with respect to the solutions of the inclusion) set. The statements are formulated in terms of the Hausdorff–Bebutov metric, the dynamical system of translations corresponding to the right-hand side of the differential inclusion, and the weakly invariant set corresponding to the inclusion.
Keywords: stability theory, Lyapunov functions, differential inclusions, controlled systems
Mots-clés : invariant sets.
@article{TIMM_2009_15_3_a13,
     author = {E. A. Panasenko and E. L. Tonkov},
     title = {Extension of {E.} {A.~Barbashin's} and {N.} {N.~Krasovskii's} stability theorems to controlled dynamical systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {185--201},
     year = {2009},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a13/}
}
TY  - JOUR
AU  - E. A. Panasenko
AU  - E. L. Tonkov
TI  - Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 185
EP  - 201
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a13/
LA  - ru
ID  - TIMM_2009_15_3_a13
ER  - 
%0 Journal Article
%A E. A. Panasenko
%A E. L. Tonkov
%T Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 185-201
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a13/
%G ru
%F TIMM_2009_15_3_a13
E. A. Panasenko; E. L. Tonkov. Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 185-201. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a13/

[1] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, Dokl. AN SSSR, 86:6 (1952), 146–152.

[2] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR | Zbl

[3] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M., 1950, 471 pp.

[4] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. Matematicheskogo in-ta im. V. A. Steklova RAN, 262, 2008, 202–221 | MR | Zbl

[5] Roxin E., “Stability in general control systems”, J. Differ. Equat., 1:2 (1965), 115–150 | DOI | MR | Zbl

[6] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[8] Ushakov V. N., Protsedury postroeniya stabilnykh mostov v differentsialnykh igrakh, Dis. $\dots$ d-ra fiz.-mat. nauk, In-t matematiki i mekhaniki UrO AN SSSR, Sverdlovsk, 1991, 308 pp.

[9] Anosov D. V., Lektsii po lineinoi algebre, Regulyar. i khaotich. dinamika, M., 1999, 105 pp. | Zbl

[10] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[11] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byul. mekh.-mat. fakulteta MGU, 1941, no. 5, 1–52

[12] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Matematicheskogo in-ta im. V. A. Steklova AN SSSR, 169, 1985, 194–252 | MR | Zbl

[13] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[15] Chaplygin S. A., “Osnovaniya novogo sposoba priblizhennogo integrirovaniya differentsialnykh uravnenii”, Byul. Ekperimentalnogo in-ta putei soobscheniya, Vyp. 1v, 1919, 1–16

[16] D. V. Anosov. i dr., Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovremen. problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR