Idealized program packages and problems of positional control with incomplete information
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 139-157
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to developing the method of program packages as a tool for investigating problems of positional control with incomplete information. The method is embedded in the field of guaranteed control theory and was stipulated by a number of constructions from this theory. Under the assumption that an a priori given set of initial positions of a controlled system is finite, it is established that the solvability of a guaranteed guidance problem in the class of program packages (or, the same, in the class of positional strategies) is equivalent to the solvability of this problem in the class of considerably simpler program operators, namely, in the class of idealized program packages.
Keywords: problem of package guidance, idealized program package, controlled system.
@article{TIMM_2009_15_3_a10,
     author = {A. V. Kryazhimskiy and Yu. S. Osipov},
     title = {Idealized program packages and problems of positional control with incomplete information},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--157},
     year = {2009},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a10/}
}
TY  - JOUR
AU  - A. V. Kryazhimskiy
AU  - Yu. S. Osipov
TI  - Idealized program packages and problems of positional control with incomplete information
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 139
EP  - 157
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a10/
LA  - ru
ID  - TIMM_2009_15_3_a10
ER  - 
%0 Journal Article
%A A. V. Kryazhimskiy
%A Yu. S. Osipov
%T Idealized program packages and problems of positional control with incomplete information
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 139-157
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a10/
%G ru
%F TIMM_2009_15_3_a10
A. V. Kryazhimskiy; Yu. S. Osipov. Idealized program packages and problems of positional control with incomplete information. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 139-157. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a10/

[1] Osipov Yu. S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4(370) (2006), 25–76 | MR | Zbl

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[5] Krasovskii A. N., Subbotin A. I., Game-theoretical control problems, Springer Verlag, New York, 1988, 517 pp. | MR | Zbl

[6] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhäuser, Boston, 1995, 322 pp. | MR

[7] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl

[8] Subbotin A. I., Generalized solutions of first-order PDEs, Birkhäuser, Boston, 1995, 312 pp. | MR

[9] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[10] Kryazhimskii A. V., Filippov S. D., “Ob igrovoi zadache navedeniya dlya dvukh tochek na ploskosti v usloviyakh nepolnoi informatsii”, Zadachi upravleniya pri nepolnoi informatsii, 19, UNTs AN SSSR, Sverdlovsk, 1976, 62–77

[11] Pak V. E., “Zadacha navedeniya s nepolnoi informatsiei”, Izv. AN SSSR. Ser. tekhn. kibernetika, 1976, no. 4, 29–36 | MR | Zbl

[12] Batukhtin V. D., “Ob odnoi igrovoi zadache navedeniya s nepolnoi informatsiei”, Prikl. matematika i mekhanika, 44:4 (1982), 579–591 | MR

[13] Krasovskii N. N., Osipov Yu. S., “Zadacha upravleniya s nepolnoi informatsiei”, Izv. AN SSSR. Mekhanika tverd. tela, 1973, no. 4, 5–14 | MR

[14] Kryazhimskii A. V., “Differentsialnaya igra sblizheniya v usloviyakh nepolnoi informatsii o sisteme”, Ukr. mat. zhurnal, 27:4 (1975), 521–526 | MR

[15] Kryazhimskii A. V., “Alternativa v lineinoi igre navedeniya-ukloneniya s nepolnoi informatsiei”, Dokl. AN SSSR, 230:4 (1976), 773–776 | MR

[16] Kreknin A. A., Subbotin A. I., “Igrovaya zadacha presledovaniya v usloviyakh nepolnoi fazovoi informatsii o presleduemoi sisteme”, Diff. sistemy upravleniya, 26, UNTs AN SSSR, Sverdlovsk, 1979, 21–33 | MR

[17] Kurzhanskii A. B., “O sinteze upravlenii po rezultatam nablyudenii”, Prikl. matematika i mekhanika, 68:4 (2004), 547–563 | MR

[18] Osipov Yu. S., Kryazhimskii F. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[19] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[20] Kryazhimskii A. V., Osipov Yu. S., “On positional calculation of $\Omega$-normal controls in dynamical systems”, Probl. Contr. Inform. Theory, 13:6 (1984), 425–436 | MR

[21] Fagnani F., Maksimov V., Pandolfi L., “A recursive deconvolution approach to disturbance reduction”, IEEE Trans. Automat. Control, 49:6 (2004), 907–921 | DOI | MR

[22] Chentsov A. G., “Metod programmnykh iteratsii v abstraktnykh zadachakh upravleniya”, Prikl. matematika i mekhanika, 68:4 (2004), 573–585 | MR | Zbl

[23] Roxin E., “Axiomatic approach in differential games”, J. Opt. Theory Appl., 3 (1969), 153–163 | DOI | MR | Zbl

[24] Ryll-Nardzewski C., “A theory of purcuit and evasion”, Advances in Game Theory, Ann. of Math. Stud., 52, Univ. Press, Princeton, 1964, 113–126 | MR