On a~class of modules over group rings of locally soluble groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 94-98
Voir la notice de l'article provenant de la source Math-Net.Ru
A module $A$ over a group ring $DG$ is studied in the case when $D$ is a Dedekind domain, the group $G$ is locally soluble, the quotient module $A/C_A(G)$ is not an Artinian $D$-module, and the system of all subgroups $H\le G$ for which the quotient modules $A/C_A(H)$ are not Artinian $D$-modules satisfies the minimality condition for subgroups. Under these assumptions, it is proved that the group $G$ is hyperabelian and some properties of its periodic part are described.
Mots-clés :
module
Keywords: group ring, locally soluble group.
Keywords: group ring, locally soluble group.
@article{TIMM_2009_15_2_a8,
author = {O. Yu. Dashkova},
title = {On a~class of modules over group rings of locally soluble groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {94--98},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a8/}
}
O. Yu. Dashkova. On a~class of modules over group rings of locally soluble groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 94-98. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a8/