On a~class of modules over group rings of locally soluble groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 94-98

Voir la notice de l'article provenant de la source Math-Net.Ru

A module $A$ over a group ring $DG$ is studied in the case when $D$ is a Dedekind domain, the group $G$ is locally soluble, the quotient module $A/C_A(G)$ is not an Artinian $D$-module, and the system of all subgroups $H\le G$ for which the quotient modules $A/C_A(H)$ are not Artinian $D$-modules satisfies the minimality condition for subgroups. Under these assumptions, it is proved that the group $G$ is hyperabelian and some properties of its periodic part are described.
Mots-clés : module
Keywords: group ring, locally soluble group.
@article{TIMM_2009_15_2_a8,
     author = {O. Yu. Dashkova},
     title = {On a~class of modules over group rings of locally soluble groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {94--98},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a8/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On a~class of modules over group rings of locally soluble groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 94
EP  - 98
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a8/
LA  - ru
ID  - TIMM_2009_15_2_a8
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On a~class of modules over group rings of locally soluble groups
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 94-98
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a8/
%G ru
%F TIMM_2009_15_2_a8
O. Yu. Dashkova. On a~class of modules over group rings of locally soluble groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 94-98. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a8/