Voir la notice du chapitre de livre
@article{TIMM_2009_15_2_a7,
author = {A. L. Gavrilyuk},
title = {On {Terwilliger} graphs with $\mu=4$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {84--93},
year = {2009},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a7/}
}
A. L. Gavrilyuk. On Terwilliger graphs with $\mu=4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 84-93. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a7/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, New York, 1989, 494 pp. | MR
[2] Makhnev A. A., “O regulyarnykh grafakh Tervilligera s $\mu=2$”, Sib. mat. zhurn., 37:5 (1996), 1132–1134 | MR | Zbl
[3] Gavrilyuk A. L., Makhnev A. A., “O grafakh Tervilligera s $\mu\le3$”, Mat. zametki, 82:1 (2007), 14–26 | MR
[4] Gavrilyuk A. L., Makhnev A. A., “O probleme regulyarnosti v grafakh Tervilligera”, Dokl. RAN, 417:2 (2007), 151–155 | MR | Zbl
[5] Gavrilyuk A. L., Makhnev A. A., “Grafy Tervilligera, v kotorykh okrestnost nekotoroi vershiny izomorfna grafu Petersena”, Dokl. RAN, 421:4 (2008), 445–448 | MR
[6] Gavrilyuk A. L., “Ob izospektralnykh podgrafakh v biregulyarnykh geodezicheskikh grafakh diametra 2”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 4, 2007, 49–60
[7] Bous R. C., Dowling T. A., “A generalization of Moore graphs of diameter 2”, J. Combin. Theory. Ser. B, 11:3 (1971), 213–226 | DOI | MR