On Terwilliger graphs with $\mu=4$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 84-93
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Terwilliger graph is an incomplete connected graph in which the intersection of the neighborhoods of any two vertices lying at the distance of 2 is a $\mu$-clique for some constant $\mu$. The local structure of Terwilliger graphs with $\mu=4$ is described.
Keywords: Terwilliger graphs, regularity problem.
@article{TIMM_2009_15_2_a7,
     author = {A. L. Gavrilyuk},
     title = {On {Terwilliger} graphs with $\mu=4$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {84--93},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a7/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
TI  - On Terwilliger graphs with $\mu=4$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 84
EP  - 93
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a7/
LA  - ru
ID  - TIMM_2009_15_2_a7
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%T On Terwilliger graphs with $\mu=4$
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 84-93
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a7/
%G ru
%F TIMM_2009_15_2_a7
A. L. Gavrilyuk. On Terwilliger graphs with $\mu=4$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 84-93. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a7/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, New York, 1989, 494 pp. | MR

[2] Makhnev A. A., “O regulyarnykh grafakh Tervilligera s $\mu=2$”, Sib. mat. zhurn., 37:5 (1996), 1132–1134 | MR | Zbl

[3] Gavrilyuk A. L., Makhnev A. A., “O grafakh Tervilligera s $\mu\le3$”, Mat. zametki, 82:1 (2007), 14–26 | MR

[4] Gavrilyuk A. L., Makhnev A. A., “O probleme regulyarnosti v grafakh Tervilligera”, Dokl. RAN, 417:2 (2007), 151–155 | MR | Zbl

[5] Gavrilyuk A. L., Makhnev A. A., “Grafy Tervilligera, v kotorykh okrestnost nekotoroi vershiny izomorfna grafu Petersena”, Dokl. RAN, 421:4 (2008), 445–448 | MR

[6] Gavrilyuk A. L., “Ob izospektralnykh podgrafakh v biregulyarnykh geodezicheskikh grafakh diametra 2”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 4, 2007, 49–60

[7] Bous R. C., Dowling T. A., “A generalization of Moore graphs of diameter 2”, J. Combin. Theory. Ser. B, 11:3 (1971), 213–226 | DOI | MR