On the intersections of solvable Hall subgroups in finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 74-83
Voir la notice de l'article provenant de la source Math-Net.Ru
The following conjecture is considered: if a finite group $G$ possesses a solvable $\pi$-Hall subgroup $H$, then there exist elements $x,y,z,t\in G$ such that the identity $H\cap H^x\cap H^y\cap H^z\cap H^t=O_\pi(G)$ holds. Under additional conditions on $G$ and $H$, it is shown that a minimal counterexample to this conjecture must be an almost simple group of Lie type.
Keywords:
solvable Hall subgroup, finite simple group, $\pi$-radical.
@article{TIMM_2009_15_2_a6,
author = {E. P. Vdovin and V. I. Zenkov},
title = {On the intersections of solvable {Hall} subgroups in finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {74--83},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/}
}
TY - JOUR AU - E. P. Vdovin AU - V. I. Zenkov TI - On the intersections of solvable Hall subgroups in finite groups JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 74 EP - 83 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/ LA - ru ID - TIMM_2009_15_2_a6 ER -
E. P. Vdovin; V. I. Zenkov. On the intersections of solvable Hall subgroups in finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/