On the intersections of solvable Hall subgroups in finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 74-83
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following conjecture is considered: if a finite group $G$ possesses a solvable $\pi$-Hall subgroup $H$, then there exist elements $x,y,z,t\in G$ such that the identity $H\cap H^x\cap H^y\cap H^z\cap H^t=O_\pi(G)$ holds. Under additional conditions on $G$ and $H$, it is shown that a minimal counterexample to this conjecture must be an almost simple group of Lie type.
Keywords: solvable Hall subgroup, finite simple group, $\pi$-radical.
@article{TIMM_2009_15_2_a6,
     author = {E. P. Vdovin and V. I. Zenkov},
     title = {On the intersections of solvable {Hall} subgroups in finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--83},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - V. I. Zenkov
TI  - On the intersections of solvable Hall subgroups in finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 74
EP  - 83
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/
LA  - ru
ID  - TIMM_2009_15_2_a6
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A V. I. Zenkov
%T On the intersections of solvable Hall subgroups in finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 74-83
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/
%G ru
%F TIMM_2009_15_2_a6
E. P. Vdovin; V. I. Zenkov. On the intersections of solvable Hall subgroups in finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/

[1] J. H. Conway, R. G. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[2] Hall P., “Teorems like Sylow's”, Proc. London Math. Soc., 6 (1956), 286–304 | DOI | MR | Zbl

[3] Zenkov V. I., “O peresecheniyakh razreshimykh khollovykh podgrupp v konechnykh nerazreshimykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 86–89 | MR

[4] Passman D. S., “Groups with normal solvable Hall $p'$-subgroups”, Trans. Amer. Math. Soc., 123:1 (1966), 99–111 | DOI | MR | Zbl

[5] Zenkov V. I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fund. i prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl

[6] Dolfi S., “Intersections of odd order Hall subgroups”, Bull. London Math. Soc., 37:1 (2005), 61–66 | DOI | MR | Zbl

[7] Dolfi S., “Large orbits in coprime actions of solvable groups”, Trans. AMS, 360:1 (2008), 135–152 | DOI | MR | Zbl

[8] Vdovin E. P., “Regular orbits of solvable linear $p'$-groups”, Sib. Electr. Math. Reports, 4 (2007), 345–360 | MR | Zbl

[9] Huppert B., Endliche Gruppen I, Springer, Berlin, 1967, 808 pp. | MR | Zbl

[10] Zenkov V. I., “Peresecheniya abelevykh podgrupp v konechnykh gruppakh”, Mat. zametki, 56:2 (1994), 150–152 | MR | Zbl

[11] Seress A., “The minimal base size of primitive solvable permutation groups”, J. London Math. Soc., 53:2 (1996), 243–255 | MR | Zbl

[12] Isaacs I. M., Finite group theory, Amer. Math. Soc., Providence, RI, 2008, 351 pp. | MR

[13] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR | Zbl

[14] Revin D. O., Vdovin E. P., “Hall subgroups of finite groups”, Ischia Group Theory–2004, Proc. Conf. in Honor of Marcel Herzog., Contemporary Math., 402, 2006, 229–263 | MR | Zbl

[15] The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4.4.10, URL: , 2008 http://www.gap-system.org.

[16] Mazurov V. D., Zenkov V. I., “Peresecheniya silovskikh podgrupp v konechnykh prostykh gruppakh”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[17] Gross F., “On a conjecture of Philip Hall”, Proc. London Math. Soc. Ser. III, 53:3 (1986), 464–494 | DOI | MR

[18] Revin D. O., “Svoistvo $D_\pi$ v odnom klasse konechnykh grupp”, Algebra i logika, 41:3 (2002), 335–370 | MR | Zbl