On the intersections of solvable Hall subgroups in finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 74-83

Voir la notice de l'article provenant de la source Math-Net.Ru

The following conjecture is considered: if a finite group $G$ possesses a solvable $\pi$-Hall subgroup $H$, then there exist elements $x,y,z,t\in G$ such that the identity $H\cap H^x\cap H^y\cap H^z\cap H^t=O_\pi(G)$ holds. Under additional conditions on $G$ and $H$, it is shown that a minimal counterexample to this conjecture must be an almost simple group of Lie type.
Keywords: solvable Hall subgroup, finite simple group, $\pi$-radical.
@article{TIMM_2009_15_2_a6,
     author = {E. P. Vdovin and V. I. Zenkov},
     title = {On the intersections of solvable {Hall} subgroups in finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - V. I. Zenkov
TI  - On the intersections of solvable Hall subgroups in finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 74
EP  - 83
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/
LA  - ru
ID  - TIMM_2009_15_2_a6
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A V. I. Zenkov
%T On the intersections of solvable Hall subgroups in finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 74-83
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/
%G ru
%F TIMM_2009_15_2_a6
E. P. Vdovin; V. I. Zenkov. On the intersections of solvable Hall subgroups in finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a6/