Оn automorphisms of the generalized hexagon of order (3,27)
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 34-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Possible orders and fixed-point subgraphs for automorphisms of the generalized hexagon $S$ of order (3,27) are found. It is proved that, if the automorphism group of $S$ acts transitively on points, then $S$ is isomorphic to the classical generalized hexagon corresponding to the building of the Steinberg group $^3D_4(3)$.
@article{TIMM_2009_15_2_a2,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {{\CYRO}n automorphisms of the generalized hexagon of order (3,27)},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {34--44},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Оn automorphisms of the generalized hexagon of order (3,27)
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 34
EP  - 44
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/
LA  - ru
ID  - TIMM_2009_15_2_a2
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Оn automorphisms of the generalized hexagon of order (3,27)
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 34-44
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/
%G ru
%F TIMM_2009_15_2_a2
I. N. Belousov; A. A. Makhnev. Оn automorphisms of the generalized hexagon of order (3,27). Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 34-44. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/