Оn automorphisms of the generalized hexagon of order (3,27)
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 34-44
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Possible orders and fixed-point subgraphs for automorphisms of the generalized hexagon $S$ of order (3,27) are found. It is proved that, if the automorphism group of $S$ acts transitively on points, then $S$ is isomorphic to the classical generalized hexagon corresponding to the building of the Steinberg group $^3D_4(3)$.
@article{TIMM_2009_15_2_a2,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {{\CYRO}n automorphisms of the generalized hexagon of order (3,27)},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {34--44},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Оn automorphisms of the generalized hexagon of order (3,27)
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 34
EP  - 44
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/
LA  - ru
ID  - TIMM_2009_15_2_a2
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Оn automorphisms of the generalized hexagon of order (3,27)
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 34-44
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/
%G ru
%F TIMM_2009_15_2_a2
I. N. Belousov; A. A. Makhnev. Оn automorphisms of the generalized hexagon of order (3,27). Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 34-44. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/

[1] Cameron P. J., Permutation groups, London Math. Soc. Student Texts, 45, Cambr. Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[2] Makhnev A. A., Paduchikh D. V., “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl

[3] Makhnev A. A., Nosov V. V., “Ob avtomorfizmakh silno regulyarnykh grafov s $\lambda=0$, $\mu=2$”, Mat. sbornik, 195:3 (2004), 47–68 | MR | Zbl

[4] Makhnev A. A., Minakova I. M., “Ob avtomorfizmakh silno regulyarnykh grafov s parametrami $\lambda=0$, $\mu=2$”, Diskret. matematika, 16:1 (2004), 95–104 | MR | Zbl

[5] Cohen A., Tits J., “On generalized hexagons and a near octagon whose lines have three points”, Europ. J. Comb., 6 (1985), 13–27 | MR | Zbl

[6] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 494 pp. | MR

[7] Van Maldeghem H., Generalized polygons, Monog. in Math., 93, Birkhäuser, Basel, 1998, 502 pp. | MR | Zbl

[8] Kondratev A. S., Mazurov V. D., “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. mat. zhurn., 41:2 (2000), 359–369 | MR