Оn automorphisms of the generalized hexagon of order (3,27)
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 34-44
Voir la notice de l'article provenant de la source Math-Net.Ru
Possible orders and fixed-point subgraphs for automorphisms of the generalized hexagon $S$ of order (3,27)
are found. It is proved that, if the automorphism group of $S$ acts transitively on points, then $S$ is isomorphic
to the classical generalized hexagon corresponding to the building of the Steinberg group $^3D_4(3)$.
@article{TIMM_2009_15_2_a2,
author = {I. N. Belousov and A. A. Makhnev},
title = {{\CYRO}n automorphisms of the generalized hexagon of order (3,27)},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {34--44},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/}
}
TY - JOUR AU - I. N. Belousov AU - A. A. Makhnev TI - Оn automorphisms of the generalized hexagon of order (3,27) JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 34 EP - 44 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/ LA - ru ID - TIMM_2009_15_2_a2 ER -
I. N. Belousov; A. A. Makhnev. Оn automorphisms of the generalized hexagon of order (3,27). Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 34-44. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a2/