Modified boundary element method for problems about oscillations of flat membranes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 211-221

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified boundary element method (MBEM) for hyperbolic problems is exemplified by solving the problem of oscillations of a flat membrane. The modification of the method consists in the analytical computation of the components of the influence vector; the integration is carried out not over all the component of the boundary but only once over a specially chosen base element.
Mots-clés : membrane, oscillation
Keywords: boundary, elementary solution, parallel computing.
@article{TIMM_2009_15_2_a19,
     author = {V. P. Fedotov and A. A. Konteev},
     title = {Modified boundary element method for problems about oscillations of flat membranes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {211--221},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/}
}
TY  - JOUR
AU  - V. P. Fedotov
AU  - A. A. Konteev
TI  - Modified boundary element method for problems about oscillations of flat membranes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 211
EP  - 221
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/
LA  - ru
ID  - TIMM_2009_15_2_a19
ER  - 
%0 Journal Article
%A V. P. Fedotov
%A A. A. Konteev
%T Modified boundary element method for problems about oscillations of flat membranes
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 211-221
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/
%G ru
%F TIMM_2009_15_2_a19
V. P. Fedotov; A. A. Konteev. Modified boundary element method for problems about oscillations of flat membranes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 211-221. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/