Modified boundary element method for problems about oscillations of flat membranes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 211-221
Voir la notice du chapitre de livre
A modified boundary element method (MBEM) for hyperbolic problems is exemplified by solving the problem of oscillations of a flat membrane. The modification of the method consists in the analytical computation of the components of the influence vector; the integration is carried out not over all the component of the boundary but only once over a specially chosen base element.
Mots-clés :
membrane, oscillation
Keywords: boundary, elementary solution, parallel computing.
Keywords: boundary, elementary solution, parallel computing.
@article{TIMM_2009_15_2_a19,
author = {V. P. Fedotov and A. A. Konteev},
title = {Modified boundary element method for problems about oscillations of flat membranes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {211--221},
year = {2009},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/}
}
TY - JOUR AU - V. P. Fedotov AU - A. A. Konteev TI - Modified boundary element method for problems about oscillations of flat membranes JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 211 EP - 221 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/ LA - ru ID - TIMM_2009_15_2_a19 ER -
V. P. Fedotov; A. A. Konteev. Modified boundary element method for problems about oscillations of flat membranes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 211-221. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a19/
[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 728 pp.
[2] Brebbiya K., Telles Zh., Vroubel L., Metody granichnykh elementov, Mir, M., 1987, 524 pp. | MR
[3] Mansur W. J., Brebbia C. A., “Formulation of the boundary element method for transient problems governed by the scalar wave equation”, Appl. Math. Modelling, 6:4 (1982), 307–311 | DOI | Zbl
[4] Fedotov V. P., Spevak L. F., Reshenie svyaznykh diffuzionno-deformatsionnykh zadach na osnove algoritmov parallelnogo deistviya, UrO RAN, Ekaterinburg, 2007, 191 pp.