On Shunkov Groups with a~strongly embedded subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 203-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Infinite Shunkov groups with the following condition are studied: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, the almost layer-finiteness of the periodic part of a Shunkov group with a strongly embedded subgroup possessing a Chernikov almost layer-finite periodic part is established. Earlier, the author proved the almost layer-finiteness of a Shunkov group with a strongly embedded group under the conditions that all proper subgroups are almost layer-finite and that the group is periodic.
Keywords: infinite groups, finiteness conditions, layer-finiteness, periodicity.
@article{TIMM_2009_15_2_a18,
     author = {V. I. Senashov},
     title = {On {Shunkov} {Groups} with a~strongly embedded subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {203--210},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/}
}
TY  - JOUR
AU  - V. I. Senashov
TI  - On Shunkov Groups with a~strongly embedded subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 203
EP  - 210
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/
LA  - ru
ID  - TIMM_2009_15_2_a18
ER  - 
%0 Journal Article
%A V. I. Senashov
%T On Shunkov Groups with a~strongly embedded subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 203-210
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/
%G ru
%F TIMM_2009_15_2_a18
V. I. Senashov. On Shunkov Groups with a~strongly embedded subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 203-210. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/