On Shunkov Groups with a strongly embedded subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 203-210
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Infinite Shunkov groups with the following condition are studied: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, the almost layer-finiteness of the periodic part of a Shunkov group with a strongly embedded subgroup possessing a Chernikov almost layer-finite periodic part is established. Earlier, the author proved the almost layer-finiteness of a Shunkov group with a strongly embedded group under the conditions that all proper subgroups are almost layer-finite and that the group is periodic.
Keywords: infinite groups, finiteness conditions, layer-finiteness, periodicity.
@article{TIMM_2009_15_2_a18,
     author = {V. I. Senashov},
     title = {On {Shunkov} {Groups} with a~strongly embedded subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {203--210},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/}
}
TY  - JOUR
AU  - V. I. Senashov
TI  - On Shunkov Groups with a strongly embedded subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 203
EP  - 210
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/
LA  - ru
ID  - TIMM_2009_15_2_a18
ER  - 
%0 Journal Article
%A V. I. Senashov
%T On Shunkov Groups with a strongly embedded subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 203-210
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/
%G ru
%F TIMM_2009_15_2_a18
V. I. Senashov. On Shunkov Groups with a strongly embedded subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 203-210. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a18/

[1] Chernikov S. N., “K teorii beskonechnykh $p$-grupp”, Dokl. AN SSSR, 1945, 71–74 | Zbl

[2] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975, 336 pp. | MR | Zbl

[3] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989, 448 pp. | MR

[4] Izmailov A. N., Shunkov V. P., “Dva priznaka neprostoty gruppy s beskonechno izolirovannoi podgruppoi”, Algebra i logika, 21:6 (1982), 647–669 | MR

[5] Izmailov A. N., “O silno vlozhennoi beskonechno izolirovannoi podgruppe v periodicheskoi gruppe”, Algebra i logika, 22:2 (1983), 128–137 | MR

[6] Mazurov V. D., “O dvazhdy tranzitivnykh gruppakh podstanovok”, Sib. mat. zhurn., 31:4 (1990), 102–104 | MR | Zbl

[7] Mazurov V. D., “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[8] Sozutov A. I., “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika, 39:5 (2000), 602–617 | MR

[9] Sozutov A. I., Suchkov N. M., “O beskonechnykh gruppakh s zadannoi silno izolirovannoi 2-podgruppoi”, Mat. zametki, 68:2 (2000), 272–285 | MR | Zbl

[10] Sozutov A. I., “Dva priznaka neprostoty gruppy s silno vlozhennoi podgruppoi i konechnoi involyutsiei”, Mat. zametki, 69:3 (2001), 443–453 | MR | Zbl

[11] Suchkov N. M., “O periodicheskikh gruppakh s abelevymi tsentralizatorami involyutsii”, Mat. sb., 193:2 (2002), 153–160 | MR | Zbl

[12] Senashov V. I., “Dostatochnye usloviya pochti sloinoi konechnosti gruppy”, Ukr. mat. zhurn., 51:4 (1999), 472–485 | MR | Zbl

[13] Senashov V. I., “Stroenie beskonechnoi silovskoi podgruppy v nekotorykh periodicheskikh gruppakh Shunkova”, Diskret. matematika, 14:4 (2002), 133–152 | MR | Zbl

[14] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1980, 384 pp. | MR

[15] Shunkov V. P., $T_0$-gruppy, Nauka, Novosibirsk, 2000, 178 pp. | Zbl

[16] Shunkov V. P., $M_p$-gruppy, Nauka, M., 1990, 160 pp. | MR | Zbl

[17] Shunkov V. P., O vlozhenii primarnykh elementov v gruppe, Nauka, Novosibirsk, 1992, 148 pp. | MR | Zbl

[18] Senashov V. I., Shunkov V. P., “Pochti sloinaya konechnost periodicheskoi chasti gruppy bez involyutsii”, Diskret. matematika, 15:3 (2003), 91–104 | MR | Zbl

[19] Senashov V. I., Shunkov V. P., Gruppy s usloviyami konechnosti, Izd-vo SO RAN, Novosibirsk, 2001, 336 pp. | MR

[20] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., pererab. i dop., Nauka, M., 1982, 288 pp. | MR | Zbl

[21] Senashov V. I., “Gruppy s usloviem minimalnosti dlya ne pochti sloino konechnykh podgrupp”, Ukr. mat. zhurn., 43:7–8 (1991), 1002–1008 | MR

[22] Kurosh A. G., Teoriya grupp, 3-e izd., Nauka, M., 1967, 648 pp. | MR | Zbl

[23] Sozutov A. I., Shunkov V. P., “O beskonechnykh gruppakh, nasyschennykh frobeniusovymi podgruppami”, Ch. 1, 2, Algebra i logika, 16:6 (1977), 711–735 ; Алгебра и логика, 18:2 (1979), 206–223 | MR | Zbl | MR | Zbl