On the coincidence of the set-open and uniform topologies
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 177-184
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The $\mathbb R$-compactness property is studied and criteria are established for the coincidence of the set-open topology and the topology of uniform convergence on the spaces of continuous functions.
Keywords: space of continuous functions, set-open topology, topology of uniform convergence on a family of sets.
@article{TIMM_2009_15_2_a15,
     author = {S. \`E. Nokhrin and A. V. Osipov},
     title = {On the coincidence of the set-open and uniform topologies},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {177--184},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a15/}
}
TY  - JOUR
AU  - S. È. Nokhrin
AU  - A. V. Osipov
TI  - On the coincidence of the set-open and uniform topologies
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 177
EP  - 184
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a15/
LA  - ru
ID  - TIMM_2009_15_2_a15
ER  - 
%0 Journal Article
%A S. È. Nokhrin
%A A. V. Osipov
%T On the coincidence of the set-open and uniform topologies
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 177-184
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a15/
%G ru
%F TIMM_2009_15_2_a15
S. È. Nokhrin; A. V. Osipov. On the coincidence of the set-open and uniform topologies. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 177-184. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a15/

[1] Asanov M. O., Prostranstvo nepreryvnykh otobrazhenii, dis. $\dots$ kand. fiz.-mat. nauk, Sverdlovsk, 1980, 72 pp.

[2] Nokhrin S. E., Prostranstvo nepreryvnykh funktsii v mnozhestvenno-otkrytykh topologiyakh, dis. $\dots$ kand. fiz.-mat. nauk, Ekaterinburg, 1997, 90 pp.

[3] Engelking R., Obschaya topologiya, Mir, M., 1986, 754 pp. | MR

[4] Arens R., Dugundji J., “Topologies for functions spaces”, Pac. J. Math., 1 (1951), 5–31 | MR | Zbl

[5] Fox R. H., “On topologis for function spaces”, Bull. Amer. Math. Soc., 51 (1945), 429–432 | DOI | MR | Zbl

[6] McCoy R. A., Ntantu I., Topologies properties of spaces of continuous functions, Lect. Notes Math. Ser., 1325, Springer-Verlag, Berlin, 1988, 124 pp. | MR