Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 143-161
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Connected graphs are studied in which neighborhoods of vertices are isomorphic to the Hoffman—Singleton graph (i.e., the strongly regular graph with parameters (50,7,0,1)). It is proved that a distance-regular graph in which neighborhoods of vertices are isomorphic to the Hoffman—Singleton graph has $\mu=2$.
Keywords: Hoffman-–Singleton graph, distance-regular graph, locally $\mathcal F$-graph.
@article{TIMM_2009_15_2_a13,
     author = {A. A. Makhnev},
     title = {Graphs in which neighborhoods of vertices are isomorphic to the {Hoffman{\textendash}Singleton} graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {143--161},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 143
EP  - 161
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/
LA  - ru
ID  - TIMM_2009_15_2_a13
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 143-161
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/
%G ru
%F TIMM_2009_15_2_a13
A. A. Makhnev. Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 143-161. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR

[2] Gavrilyuk A. L.,Makhnev A. A., “Grafy Tervilligera, v kotorykh okrestnost nekotoroi vershiny izomorfna grafu Petersena”, Dokl. RAN, 421:4 (2008), 445–448 | MR

[3] Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN, 422:6 (2008), 735–737 | MR

[4] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl

[5] Terwilliger P., “A new feasibility condition for distance-regular graphs”, Discrete Math., 61:2–3 (1986), 311–315 | DOI | MR | Zbl

[6] Haemers W. H., “Interlacing eigenvalues and graphs”, Linear Alg. Appl., 226–228 (1995), 593–616 | DOI | MR | Zbl