Voir la notice du chapitre de livre
@article{TIMM_2009_15_2_a13,
author = {A. A. Makhnev},
title = {Graphs in which neighborhoods of vertices are isomorphic to the {Hoffman{\textendash}Singleton} graph},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {143--161},
year = {2009},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/}
}
TY - JOUR AU - A. A. Makhnev TI - Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 143 EP - 161 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/ LA - ru ID - TIMM_2009_15_2_a13 ER -
A. A. Makhnev. Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 143-161. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a13/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR
[2] Gavrilyuk A. L.,Makhnev A. A., “Grafy Tervilligera, v kotorykh okrestnost nekotoroi vershiny izomorfna grafu Petersena”, Dokl. RAN, 421:4 (2008), 445–448 | MR
[3] Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. RAN, 422:6 (2008), 735–737 | MR
[4] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl
[5] Terwilliger P., “A new feasibility condition for distance-regular graphs”, Discrete Math., 61:2–3 (1986), 311–315 | DOI | MR | Zbl
[6] Haemers W. H., “Interlacing eigenvalues and graphs”, Linear Alg. Appl., 226–228 (1995), 593–616 | DOI | MR | Zbl