Primitive parabolic permutation representations of finite special linear and unitary groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 114-124
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The ranks, degrees, subdegrees, and double stabilizers of the permutation representations of finite special linear and unitary groups on the cosets of the parabolic maximal subgroups are found.
Keywords: permutation representation, parabolic subgroup, classical group, isotropic subspace.
@article{TIMM_2009_15_2_a10,
     author = {V. V. Korableva},
     title = {Primitive parabolic permutation representations of finite special linear and unitary groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {114--124},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a10/}
}
TY  - JOUR
AU  - V. V. Korableva
TI  - Primitive parabolic permutation representations of finite special linear and unitary groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 114
EP  - 124
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a10/
LA  - ru
ID  - TIMM_2009_15_2_a10
ER  - 
%0 Journal Article
%A V. V. Korableva
%T Primitive parabolic permutation representations of finite special linear and unitary groups
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 114-124
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a10/
%G ru
%F TIMM_2009_15_2_a10
V. V. Korableva. Primitive parabolic permutation representations of finite special linear and unitary groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 114-124. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a10/

[1] Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh klassicheskikh grupp. Spetsialnye lineinye, simplekticheskie i unitarnye gruppy”, Algebra i logika, 32:3 (1993), 267–287 | MR | Zbl

[2] Bacilev A. V.,Mazurov V. D., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh ortogonalnykh grupp”, Algebra i logika, 33:6 (1994), 603–627 | MR

[3] Vasilev A. V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp tipa $G_2$ i $F_4$”, Algebra i logika, 35:6 (1996), 663–684 | MR

[4] Vasilev A. V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp tipa $E_6$, $E_7$ i $E_8$”, Algebra i logika, 36:5 (1997), 518–530 | MR

[5] Vasilev A. V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp skruchennogo tipa”, Algebra i logika, 37:1 (1998), 17–35 | MR

[6] Korableva V. V., “Parabolicheskie podstanovochnye predstavleniya gruppy $F_4(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 39–59

[7] Korableva V. V., “Parabolicheskie podstanovochnye predstavleniya grupp $F_6(q)$ i $F_6(q)$”, Kombinator. i vychisl. metody v matematike, OmGU, Omsk, 1999, 160–189

[8] Korableva V. V., Parabolicheskie podstanovochnye predstavleniya grupp $F_8(q)$, Dep. v VINITI 29.10.99, No 3224-V99, Chelyab. gos. un-t, 221 pp.

[9] Korableva V. V., “Parabolicheskie podstanovochnye predstavleniya grupp ${}^2F_4(q)$ i ${}^3D_4(q^3)$”, Mat. zametki, 67:1 (2000), 69–76 | MR | Zbl

[10] Korableva V. V., “Parabolicheskie podstanovochnye predstavleniya grupp ${}^2E_6(q)$”, Mat. zametki, 67:6 (2000), 899–912 | MR | Zbl

[11] Korableva V. V., “Rangi primitivnykh parabolicheskikh podstanovochnykh predstavlenii klassicheskikh grupp lievskogo tipa $A_l(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 2, Ekaterinburg, 2001, 188–193 | MR

[12] Korableva V. V., “Rangi primitivnykh parabolicheskikh podstanovochnykh predstavlenii prostykh grupp $B_l(q)$, $C_l(q)$ i $D_l(q)$”, Sib. mat. zhurn., 49:2 (2008), 340–356 | MR

[13] Korableva V. V., “Primitivnye parabolicheskie podstanovochnye predstavleniya prostykh grupp $A_l(q)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 70–81

[14] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Ser., 129, 1990, 303 pp. | MR | Zbl

[15] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987, 476 pp. | MR