On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. IV.
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 12-33
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Investigations are continued concerning the conjecture that the alternating groups $A_n$ have no pairs of semiproportional irreducible characters. In order to prove this conjecture by induction on $n$, the author proposed a new conjecture, formulated in terms of pairs $\chi^\alpha$ and $\chi^\beta$ of irreducible characters of the symmetric group $S_n$ that are semiproportional on one of the sets $A_n$ or $S_n\setminus A_n$ ($\alpha$ and $\beta$ are partitions of the number $n$ corresponding to these characters). The theorem proved in this paper allows one to exclude from consideration the item of this conjecture in which the 4-kernels of the partitions $\alpha$ and $\beta$ have type $3^k.\Sigma_l$.
Keywords: symmetric groups, alternating groups, irreducible characters, semiproportionality.
@article{TIMM_2009_15_2_a1,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n${.~IV.}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--33},
     year = {2009},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. IV.
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 12
EP  - 33
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/
LA  - ru
ID  - TIMM_2009_15_2_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. IV.
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 12-33
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/
%G ru
%F TIMM_2009_15_2_a1
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. IV.. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 12-33. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/

[1] Belonogov V. A., “O neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[2] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 143–163 | MR

[3] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. II”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 58–68

[4] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. III”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 12–30

[5] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[6] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990 | MR

[7] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981, 510 pp. | MR

[8] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[9] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$”, Algebra i logika, 47:2 (2008), 135–156 | MR | Zbl

[10] Belonogov V. A., “Diagrammy Yunga bez kryukov dliny 4 i kharaktery gruppy $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 30–40

[11] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 11–43

[12] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 13–32

[13] Belonogov V. A., “O diagrammakh Yunga pary neprivodimykh kharakterov $S_n$, ravnokornevykh na $S_n^\varepsilon$”, Sib. mat. zhurn., 49:5 (2008), 992–1006 | MR