On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~IV.
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 12-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigations are continued concerning the conjecture that the alternating groups $A_n$ have no pairs of semiproportional irreducible characters. In order to prove this conjecture by induction on $n$, the author proposed a new conjecture, formulated in terms of pairs $\chi^\alpha$ and $\chi^\beta$ of irreducible characters of the symmetric group $S_n$ that are semiproportional on one of the sets $A_n$ or $S_n\setminus A_n$ ($\alpha$ and $\beta$ are partitions of the number $n$ corresponding to these characters). The theorem proved in this paper allows one to exclude from consideration the item of this conjecture in which the 4-kernels of the partitions $\alpha$ and $\beta$ have type $3^k.\Sigma_l$.
Keywords: symmetric groups, alternating groups, irreducible characters, semiproportionality.
@article{TIMM_2009_15_2_a1,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n${.~IV.}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--33},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~IV.
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 12
EP  - 33
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/
LA  - ru
ID  - TIMM_2009_15_2_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~IV.
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 12-33
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/
%G ru
%F TIMM_2009_15_2_a1
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$.~IV.. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 12-33. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a1/