On groups of central units of integral group rings of alternating groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic aim of this paper is to completely describe groups of central units of integral group rings of alternating groups in the case when the group of central units has rank 1. The results are obtained in two stages. First, it is proved that the generator of the group of central units is local. Then, its exact value is found.
Keywords: group ring, alternating group, central unit, local unit, minimal central idempotent, irreducible character, exponent of group.
@article{TIMM_2009_15_2_a0,
     author = {R. Zh. Aleev and V. V. Sokolov},
     title = {On groups of central units of integral group rings of alternating groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a0/}
}
TY  - JOUR
AU  - R. Zh. Aleev
AU  - V. V. Sokolov
TI  - On groups of central units of integral group rings of alternating groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 3
EP  - 11
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a0/
LA  - ru
ID  - TIMM_2009_15_2_a0
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%A V. V. Sokolov
%T On groups of central units of integral group rings of alternating groups
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 3-11
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a0/
%G ru
%F TIMM_2009_15_2_a0
R. Zh. Aleev; V. V. Sokolov. On groups of central units of integral group rings of alternating groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a0/