About the sharp Jackson–Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 122-134
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The best constant $C_{nm}$ in the Jackson–Nikol'skii inequality between uniform and integral norms of algebraic polynomials of given total degree $n\ge0$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ is studied. Two-sided estimates for the constant $C_{nm}$ are obtained, which, in particular, give the order $n^{m-1}$ of its behavior with respect to $n$ as $n\to+\infty$ for a fixed $m$.
Keywords: multidimensional Euclidean sphere, algebraic polynomials, Jackson–Nikol'skii inequality.
@article{TIMM_2009_15_1_a9,
     author = {M. V. Deikalova},
     title = {About the sharp {Jackson{\textendash}Nikol'skii} inequality for algebraic polynomials on a~multidimensional {Euclidean} sphere},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--134},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/}
}
TY  - JOUR
AU  - M. V. Deikalova
TI  - About the sharp Jackson–Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 122
EP  - 134
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/
LA  - ru
ID  - TIMM_2009_15_1_a9
ER  - 
%0 Journal Article
%A M. V. Deikalova
%T About the sharp Jackson–Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 122-134
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/
%G ru
%F TIMM_2009_15_1_a9
M. V. Deikalova. About the sharp Jackson–Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 122-134. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/

[1] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR | Zbl

[2] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR | Zbl

[3] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR

[4] Babenko V., Kofanov V., Pichugov S., “Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions”, Approx. Theory, A volume dedicated to Blagovest Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 24–53 | MR | Zbl

[5] Gorbachev D. V., “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., Suppl. 2, 2004, S117–S138 | MR

[6] Gorbachev D. V., Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, Izd-vo “Grif i K”, Tula, 2005, 152 pp.

[7] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, 1951, 244–278

[8] Ivanov V. I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | Zbl

[9] Arestov V. V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl

[10] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya: v 3 t., T. 3, Izd- vo “Lan”, Spb., 1997, 672 pp.

[11] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | MR | Zbl

[12] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.

[13] Babenko A. G., Ekstremalnye svoistva polinomov i tochnye otsenki srednekvadratichnykh priblizhenii, Diss. $\dots$ kand. fiz.-mat. nauk, In-t matematiki i mekhaniki UrO RAN, Sverdlovsk, 1987, 109 pp.

[14] Arestov V. V., Raevskaya V. Yu., “Odna ekstremalnaya zadacha dlya algebraicheskikh mnogochlenov s nulevym srednim znacheniem na otrezke”, Mat. zametki, 62:3 (1997), 332–342 | MR | Zbl

[15] Babenko A. G., “Tochnaya konstanta v odnom neravenstve slabogo tipa dlya polinomov”, Tez. dokl. Mezhdunar. konf. po teorii priblizheniya funktsii, In-t matematiki AN USSR, Kiev, 1983, 11

[16] Babenko A. G., “Ob odnoi ekstremalnoi zadache dlya polinomov”, Mat. zametki, 35:3 (1984), 349–356 | MR | Zbl

[17] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatgiz, M., 1959, 328 pp. | MR

[18] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949, 799 pp.

[19] Chambers Ll. G., “An upper bound for the first zero of Bessel functions”, Math. Comp., 38:158 (1982), 589–591 | DOI | MR | Zbl

[20] Deikalova M. V., “Ob odnoi ekstremalnoi zadache dlya algebraicheskikh mnogochlenov s nulevym srednim znacheniem na mnogomernoi sfere”, Izv. Ural. gos. un-ta, 2006, no. 44, 42–54, Matematika i mekhanika, vyp. 9