About the sharp Jackson--Nikol'skii inequality for algebraic polynomials on a~multidimensional Euclidean sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 122-134

Voir la notice de l'article provenant de la source Math-Net.Ru

The best constant $C_{nm}$ in the Jackson–Nikol'skii inequality between uniform and integral norms of algebraic polynomials of given total degree $n\ge0$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ is studied. Two-sided estimates for the constant $C_{nm}$ are obtained, which, in particular, give the order $n^{m-1}$ of its behavior with respect to $n$ as $n\to+\infty$ for a fixed $m$.
Keywords: multidimensional Euclidean sphere, algebraic polynomials, Jackson–Nikol'skii inequality.
@article{TIMM_2009_15_1_a9,
     author = {M. V. Deikalova},
     title = {About the sharp {Jackson--Nikol'skii} inequality for algebraic polynomials on a~multidimensional {Euclidean} sphere},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/}
}
TY  - JOUR
AU  - M. V. Deikalova
TI  - About the sharp Jackson--Nikol'skii inequality for algebraic polynomials on a~multidimensional Euclidean sphere
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 122
EP  - 134
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/
LA  - ru
ID  - TIMM_2009_15_1_a9
ER  - 
%0 Journal Article
%A M. V. Deikalova
%T About the sharp Jackson--Nikol'skii inequality for algebraic polynomials on a~multidimensional Euclidean sphere
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 122-134
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/
%G ru
%F TIMM_2009_15_1_a9
M. V. Deikalova. About the sharp Jackson--Nikol'skii inequality for algebraic polynomials on a~multidimensional Euclidean sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 122-134. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a9/