Jackson inequality in $L_2(\mathbb T^N)$ with generalized modulus of continuity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 102-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The sharp Jackson inequality is proved for the space of periodic functions of many variables with mean-square norm for an arbitrary modulus of continuity generated by a difference operator with constant coefficients.
Keywords: Jackson inequality, generalized modulus of continuity, multidimensional approximation.
@article{TIMM_2009_15_1_a7,
     author = {S. N. Vasil'ev},
     title = {Jackson inequality in $L_2(\mathbb T^N)$ with generalized modulus of continuity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--110},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a7/}
}
TY  - JOUR
AU  - S. N. Vasil'ev
TI  - Jackson inequality in $L_2(\mathbb T^N)$ with generalized modulus of continuity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 102
EP  - 110
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a7/
LA  - ru
ID  - TIMM_2009_15_1_a7
ER  - 
%0 Journal Article
%A S. N. Vasil'ev
%T Jackson inequality in $L_2(\mathbb T^N)$ with generalized modulus of continuity
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 102-110
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a7/
%G ru
%F TIMM_2009_15_1_a7
S. N. Vasil'ev. Jackson inequality in $L_2(\mathbb T^N)$ with generalized modulus of continuity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 102-110. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a7/

[1] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74

[2] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Mat. zametki, 2:5 (1967), 513–522

[3] Yudin V. A., “Mnogomernaya teorema Dzheksona v $L_2$”, Mat. zametki, 29:2 (1981), 309–315 | MR | Zbl

[4] Babenko A. G., “Minimalnaya konstanta Dzheksona–Stechkina v $L^2$”, Sovrem. sostoyanie i perspektivy razvitiya matematiki v ramkakh programmy “Kazakhstan v tretem tysyacheletii”, Tr. Mezhdunar. konf. Almaty, In-t matematiki, 2001, 72–76

[5] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2$ funktsii na mnogomernoi sfere”, Mat. zametki, 60:3 (1996), 333–355 | MR | Zbl

[6] Vasilev S. N., “Tochnoe neravenstvo Dzheksona–Stechkina v $L_2$ s modulem nepreryvnosti, porozhdennym proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN, 385:1 (2002), 11–14 | MR

[7] Gorbachev D. V., Strankovskii S. A., “Odna ekstremalnaya zadacha dlya chetnykh polozhitelno opredelennykh tselykh funktsii eksponentsialnogo tipa”, Mat. zametki, 80:5 (2006), 712–717 | MR | Zbl

[8] Kozko A. I., Rozhdestvenskii A. V., “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. sb., 195:8 (2004), 3–46 | MR | Zbl

[9] Fejer L., “Lebesguesche Konstanten und divergente Fourierreihen”, J. Reine und Angew. Math., 138 (1910), 22–53 | Zbl