Exact constant in the Jackson–Stechkin inequality in the space $L^2$ on the period
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 79-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the space $L^2$ of real-valued measurable $2\pi$-periodic functions that are square summable on the period $[0,2\pi]$, the Jackson—Stechkin inequality $$ E_n(f)\le\mathcal K_n(\delta,\omega)\omega(\delta,f),\quad f\in L^2, $$ is considered, where $E_n(f)$ is the value of the best approximation of the function $f$ by trigonometric polynomials of order at most $n$ and $\omega(\delta,f)$ is the modulus of continuity of the function f in $L^2$ of order 1 or 2. The value $$ \mathcal K_n(\delta,\omega)=\sup\biggl\{\frac{E_n(f)}{\omega(\delta,f)}:f\in L^2\biggr\} $$ is found at the points $\delta=2\pi/m$ (where $m\in\mathbb N$) for $m\ge3n^2+2$ and $\omega=\omega_1$ as well as for $m\ge11n^4/3-1$ and $\omega=\omega_2$.
Keywords: Jackson-–Stechkin inequality
Mots-clés : exact constant.
@article{TIMM_2009_15_1_a6,
     author = {V. S. Balaganskii},
     title = {Exact constant in the {Jackson{\textendash}Stechkin} inequality in the space $L^2$ on the period},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--101},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a6/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - Exact constant in the Jackson–Stechkin inequality in the space $L^2$ on the period
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 79
EP  - 101
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a6/
LA  - ru
ID  - TIMM_2009_15_1_a6
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T Exact constant in the Jackson–Stechkin inequality in the space $L^2$ on the period
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 79-101
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a6/
%G ru
%F TIMM_2009_15_1_a6
V. S. Balaganskii. Exact constant in the Jackson–Stechkin inequality in the space $L^2$ on the period. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 79-101. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a6/

[1] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74

[2] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Mat. zametki, 2:5 (1967), 513–522

[3] Taikov L. V., “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Mat. zametki, 20:3 (1976), 433–438 | MR | Zbl

[4] Arestov V. V., Chernykh N. I., “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and functions spaces, Proc. Intern. Conf., North-Holland Publ. Comp., Amsterdam, 1981, 25–43 | MR

[5] Babenko A. G., “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L_2$-priblizhenii funktsii trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 1, Ekaterinburg, 2001, 30–46

[6] Vasilev S. N., “Neravenstvo Dzheksona–Stechkina v $L_2$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7, no. 1, Ekaterinburg, 2001, 75–84

[7] Babenko A. G., “O tochnoi konstante v neravenstve Dzheksona v $L_2$”, Mat. zametki, 39:5 (1986), 651–664 | MR | Zbl

[8] Kozko A. I., Rozhdestvenskii A. V., “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. zametki, 73:5 (2003), 783–788 | MR | Zbl

[9] Kozko A. I., Rozhdestvenskii A. V., “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. sb., 195:8 (2004), 3–46 | MR | Zbl

[10] Vasilev S. N., Approksimatsiya funktsii trigonometricheskimi polinomami v $L^2$ i fraktalnymi funktsiyami v $C$, Dis. $\dots$ kand. fiz.-mat. nauk, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2002, 89 pp. | Zbl

[11] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, 8-e izd., Fizmatlit, M., 2003, 864 pp.