Integral approximation of the characteristic function of an interval and the Jackson inequality in $C(\mathbb T)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 59-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An application of the results about integral approximation of the characteristic function of an interval by the subspace $\tau_{n-1}$ of trigonometric polynomials of order at most $n-1$, which were obtained by the authors earlier, to investigation of the Jackson inequality between the best uniform approximation of a continuous periodic function by the subspace $\tau_{n-1}$ and its modulus of continuity of the second order is presented. A respective method of uniform approximation of continuous periodic functions by trigonometric polynomials is constructed.
Keywords: integral approximation of a function by polynomials, the Jackson inequality.
@article{TIMM_2009_15_1_a4,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {Integral approximation of the characteristic function of an interval and the {Jackson} inequality in $C(\mathbb T)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {59--65},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a4/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - Integral approximation of the characteristic function of an interval and the Jackson inequality in $C(\mathbb T)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 59
EP  - 65
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a4/
LA  - ru
ID  - TIMM_2009_15_1_a4
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T Integral approximation of the characteristic function of an interval and the Jackson inequality in $C(\mathbb T)$
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 59-65
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a4/
%G ru
%F TIMM_2009_15_1_a4
A. G. Babenko; Yu. V. Kryakin. Integral approximation of the characteristic function of an interval and the Jackson inequality in $C(\mathbb T)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 59-65. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a4/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, GITTL, M.–L., 1947, 323 pp.

[2] Babenko A. G., Kryakin Yu. V., “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 27–56 | MR

[3] Babenko A. G., Kryakin Yu. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki, 14, no. 3, 2008, 19–37

[4] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 512 pp. | MR | Zbl

[5] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, LGU, L., 1982, 366 pp. | MR

[6] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[7] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 336 pp. | Zbl

[8] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | Zbl

[9] Edvards R., Ryady Fure v sovremennom izlozhenii: v 2 t., T. 1. Per. s angl., Mir, M., 1985, 264 pp.

[10] Foucart S., Kryakin Y., Shadrin A., “On the exact constant in the Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29:2 (2009), 157–179 | DOI | MR