Regularizing algorithms for localizing the breakpoints of a noisy function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 44-58
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of localizing the singularities (breakpoints) of functions that are noisy in the spaces $L_p$, $1$, or $C$. We construct a wide class of smoothing algorithms that determine the number and location of breakpoints. In addition, for the case when a function is noisy in $C$, a finitedifference method is constructed. For the proposed methods, convergence theorems are proved and approximation accuracy estimates for the location of breakpoints are obtained. The lower estimates obtained in this paper show the order-optimality of the methods. For all the methods constructed, their capacity of separating close breakpoints is investigated.
Keywords: ill-posed problems, localization of breakpoints, regularizing algorithms, separability threshold.
@article{TIMM_2009_15_1_a3,
     author = {T. V. Antonova},
     title = {Regularizing algorithms for localizing the breakpoints of a~noisy function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--58},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a3/}
}
TY  - JOUR
AU  - T. V. Antonova
TI  - Regularizing algorithms for localizing the breakpoints of a noisy function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 44
EP  - 58
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a3/
LA  - ru
ID  - TIMM_2009_15_1_a3
ER  - 
%0 Journal Article
%A T. V. Antonova
%T Regularizing algorithms for localizing the breakpoints of a noisy function
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 44-58
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a3/
%G ru
%F TIMM_2009_15_1_a3
T. V. Antonova. Regularizing algorithms for localizing the breakpoints of a noisy function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a3/

[1] Goncharskii A. V., Cherepaschuk A. M., Yagola A. G., Chislennye metody resheniya obratnykh zadach astrofiziki, Nauka, M., 1978, 336 pp. | MR

[2] Sizikov V. S., Matematicheskie metody obrabotki rezultatov izmerenii, Politekhnika, SPb., 2001, 240 pp. | MR

[3] Terebizh V. Yu., Vvedenie v statisticheskuyu teoriyu obratnykh zadach, Fizmatlit, M., 2005, 376 pp.

[4] Ageev A. L., Antonova T. V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Ural. gos. un-ta, 2008, no. 58, 27–45, Matematika. Mekhanika. Informatika. Vyp. 11

[5] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1-go roda po zashumlennym dannym”, Izv. vuzov. Matematika, 2001, no. 7, 65–68 | MR | Zbl

[6] Antonova T. V., “Approximation of function with finite number of discontinuities by noised data”, J. Inverse and Ill-Posed Problems, 10:2 (2002), 113–123 | MR | Zbl

[7] Antonova T. V., “O reshenii nelineinykh po parametru uravnenii 1-go roda na klassakh obobschennykh funktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 40:6 (2000), 819–831 | MR | Zbl

[8] Antonova T. V., “Reshenie uravnenii pervogo roda na klassakh funktsii s osobennostyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 1, Ekaterinburg, 2002, 147–188

[9] Ageev A. L., Antonova T. V., “Localization algorithms for singularities of solution to convolution equation of the first kind”, J. Inverse and Ill-Posed Problems, 16:7 (2008), 639–650 | DOI | MR | Zbl

[10] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matematiki i mat. fiziki, 48:8 (2008), 1362–1370 | MR

[11] Kozlov V. P., “O razreshayuschei sposobnosti spektralnykh priborov. I. Postanovka zadachi i kriterii razresheniya”, Optika i spektroskopiya, 16:3 (1964), 501–506

[12] Ageev A. L., Antonova T. V., “O zadache razdeleniya osobennostei”, Izv. vuzov. Matem., 2007, no. 11, 3–9 | MR

[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya: v 3 t., T. 2. 8-e izd., Fizmatlit, M., 2003, 864 pp.

[14] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965, 276 pp. | MR

[15] Ageev A. L., Antonova T. V., “Otsenki snizu v zadachakh lokalizatsii osobennostei funktsii”, Problemy teoreticheskoi i prikladnoi matematiki, tr. 39-i Vseros. molodezh. konf., Ekaterinburg, 2008, 56–60