On recognizability of some finite simple orthogonal groups by spectrum
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 30-43
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if $G$ is a finite group with the same set of element orders as simple group $D_p(q)$, where $p$ is a prime, $p\ge5$ and $q\in\{2,3,5\}$, then the commutator group of $G/F(G)$ is isomorphic to $D_p(q)$, the subgroup $F(G)$ is equal to 1 for $q=5$ and to $O_q(G)$ for $q\in\{2,3\}$, $F(G)\le G'$ and $|G/G'|\le2$.
Keywords:
finite simple group, spectrum of a group, prime graph, recognition by spectrum
Mots-clés : orthogonal group.
Mots-clés : orthogonal group.
@article{TIMM_2009_15_1_a2,
author = {O. A. Alekseeva and A. S. Kondrat'ev},
title = {On recognizability of some finite simple orthogonal groups by spectrum},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {30--43},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/}
}
TY - JOUR AU - O. A. Alekseeva AU - A. S. Kondrat'ev TI - On recognizability of some finite simple orthogonal groups by spectrum JO - Trudy Instituta matematiki i mehaniki PY - 2009 SP - 30 EP - 43 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/ LA - ru ID - TIMM_2009_15_1_a2 ER -
O. A. Alekseeva; A. S. Kondrat'ev. On recognizability of some finite simple orthogonal groups by spectrum. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/