On recognizability of some finite simple orthogonal groups by spectrum
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 30-43

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $G$ is a finite group with the same set of element orders as simple group $D_p(q)$, where $p$ is a prime, $p\ge5$ and $q\in\{2,3,5\}$, then the commutator group of $G/F(G)$ is isomorphic to $D_p(q)$, the subgroup $F(G)$ is equal to 1 for $q=5$ and to $O_q(G)$ for $q\in\{2,3\}$, $F(G)\le G'$ and $|G/G'|\le2$.
Keywords: finite simple group, spectrum of a group, prime graph, recognition by spectrum
Mots-clés : orthogonal group.
@article{TIMM_2009_15_1_a2,
     author = {O. A. Alekseeva and A. S. Kondrat'ev},
     title = {On recognizability of some finite simple orthogonal groups by spectrum},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/}
}
TY  - JOUR
AU  - O. A. Alekseeva
AU  - A. S. Kondrat'ev
TI  - On recognizability of some finite simple orthogonal groups by spectrum
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 30
EP  - 43
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/
LA  - ru
ID  - TIMM_2009_15_1_a2
ER  - 
%0 Journal Article
%A O. A. Alekseeva
%A A. S. Kondrat'ev
%T On recognizability of some finite simple orthogonal groups by spectrum
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 30-43
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/
%G ru
%F TIMM_2009_15_1_a2
O. A. Alekseeva; A. S. Kondrat'ev. On recognizability of some finite simple orthogonal groups by spectrum. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a2/