Invariants and Chebyshev polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 222-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On different compact sets from $\mathbb R^n$, new multidimensional analogs of algebraic polynomials of least deviation from zero (the Chebyshev polynomials) are constructed. A brief review of the analogs constructed earlier is given. Estimates of best approximations obtained by using extremal signatures, lattices, and finite groups are presented.
Keywords: lattices, designs, best approximations.
Mots-clés : invariants
@article{TIMM_2009_15_1_a17,
     author = {V. A. Yudin},
     title = {Invariants and {Chebyshev} polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--239},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a17/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - Invariants and Chebyshev polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 222
EP  - 239
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a17/
LA  - ru
ID  - TIMM_2009_15_1_a17
ER  - 
%0 Journal Article
%A V. A. Yudin
%T Invariants and Chebyshev polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 222-239
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a17/
%G ru
%F TIMM_2009_15_1_a17
V. A. Yudin. Invariants and Chebyshev polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 222-239. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a17/

[1] Chebyshev P. L., Poln. sobr. soch.: v 5 t. T. 2. Matematicheskii analiz., Izd-vo AN SSSR, M.–L., 1947, 520 pp.; Т. 3, 1948, 412 с.

[2] Korkin A. I., Zolotarev E. I., “Sur un certain minimum”, Poln. sobr. soch. E. I. Zolotareva, Vyp. 1, Izd-vo AN SSSR, L., 1931, 138–153

[3] Rivlin J. J., Shapiro H. S., “A unified approach to certain problems of approximation and minimization”, J. Soc. Indust. Appl. Math., 9 (1961), 670–699 | DOI | MR | Zbl

[4] Ehlich H., Zeller K., “Čebyšev-Polynome in mehreren Veränderlichen”, Math. Z., 93 (1966), 142–143 | DOI | MR | Zbl

[5] Sloss J. M., “Chebyshev approximation to zero”, Pacific J. Math., 15:1 (1965), 305–313 | MR | Zbl

[6] Fromm J., “$L_1$-approximation to zero”, Math. Z., 151:1 (1976), 31–33 | DOI | MR

[7] Reimer M., “On multivariate polynomials of least deviation from zero on the unit cube”, J. Approx. Theory, 23:1 (1978), 65–69 | DOI | MR | Zbl

[8] Gearhart W. B., “Some Chebyshev approximations by polynomials of two variables”, J. Approx. Theory, 8:3 (1973), 195–209 | DOI | MR | Zbl

[9] Andreev N. N., Yudin V. A., “Best approximation of polynomials on the sphere and on the ball”, Internat. Ser. Numer. Math., 137 (2001), 23–30 | MR | Zbl

[10] Yuan Xu., “On polynomials of least deviation from zero in several variables”, J. Exper. Math., 13:1 (2004), 103–112 | MR | Zbl

[11] Vallée Poussin Ch. de la., Leçons sur l'approximation des fonctions d'une variable réelle, Gautier-Villars Co., Paris, 1919, 151 pp. | Zbl

[12] Andreev N. N., Yudin V. A., “Naimenee uklonyayuschiesya ot nulya mnogochleny i kubaturnye formuly chebyshevskogo tipa”, Tr. MIAN, 232, 2001, 45–57 | MR | Zbl

[13] Bernshtein S. N., Sobranie sochinenii: v 4t. T. 1: Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 581 pp.; Т. 2. Конструктивная теория функций (1931–1953), 1954, 629 с.

[14] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp. | MR

[15] Sloane N. J. A., “Error-correcting codes and invariant theory: new applications of a nineteenth-century technique”, Amer. Math. Monthly, 84:2 (1977), 82–107 | DOI | MR | Zbl

[16] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy: v 2 t., T. 1, Mir, M., 1990, 413 pp.; Т. 2

[17] Frolov K. K., “O svyazi mezhdu kvadraturnymi formulami i podreshetkami reshetok tselykh vektorov”, Dokl. AN SSSR, 232:1 (1977), 40–43 | MR | Zbl

[18] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya funktsii trekh peremennykh”, Zhurn. vychisl. matematiki i mat. fiziki, 28:10 (1988), 1583–1586 | MR

[19] Beckers M., Cools R., “A relation between cubature formulae of trigonometric degree and lattice rules”, Intern. Ser. Numer. Math., 112 (1993), 13–24 | MR | Zbl

[20] Sloan I. H., Joe S., Lattice methods for multiple integration, Oxford Science Publications, Clarendon Press, Oxford University Press, New York, 1994, 239 pp. | MR | Zbl

[21] Reztsov A. V., “Neotritsatelnye trigonometricheskie polinomy ot mnogikh peremennykh i kubaturnye formuly gaussova tipa”, Mat. zametki, 50:5 (1991), 69–74 | MR

[22] Bos L., “On Kergin interpolation in the disk”, J. Approx. Theory, 37:3 (1983), 251–261 | DOI | MR | Zbl

[23] Maier U., “On best approximation of the monomials on the unit ball of $\mathbb R^r$”, J. Approx. Theory, 92:1 (1998), 74–81 | DOI | MR | Zbl

[24] Reimer M., “Spherical polynomial approximations: a survey”, Advances in multivariate approximation (Witten-Bommerholz, 1998), Math. Res., 107, Wiley-VCH, Berlin, 1999, 231–252 | MR | Zbl

[25] Yudin V. A., “Naimenee uklonyayuschiesya ot nulya mnogochleny”, Mat. zametki, 78:2 (2005), 308–313 | MR | Zbl

[26] Sobolev S. L., “O kubaturnykh formulakh na sfere, invariantnykh pri preobrazovanii konechnykh grupp vraschenii”, Dokl. AN SSSR, 146:2 (1962), 310–313 | MR | Zbl

[27] Delsarte P., Goethals J. M., and Seidel J. J., “Spherical codes and designs”, Geom. Dedicata, 6:3 (1977), 363–388 | MR | Zbl

[28] Goethals J. M., and Seidel J. J., “Cubature formulae, polytopes, and spherical designs”, Geometric Vein, Springer, New York–Berlin, 1981, 203–218 | MR

[29] Bannai E., “On some spherical t-designs”, J. Comb. Theory. Ser. A, 26:2 (1979), 157–161 | DOI | MR | Zbl

[30] Bannai E., “Orthogonal polynomials, algebraic, combinatorics and spherical $t$-designs”, Proc. Sympos. Pure Math., 37 (1980), 465–468 | MR | Zbl

[31] Bannai E., “Spherical designs and group representations”, dokl. “Combinatorics and Algebra” (Boulder, Colo., 1983), Contemp. Math., 34, 1984, 95–107 | MR | Zbl

[32] Sidel'nikov V. M., “Spherical 7-designs in $2^n$-dimensional Euclidean space”, J. Algebr. Combinatorics, 10:3 (1999), 279–288 | DOI | MR | Zbl

[33] Sidelnikov V. M., “Orbitnye sfericheskie 11-dizainy, u kotorykh nachalnaya tochka–koren invariantnogo mnogochlena”, Algebra i analiz, 11:4 (1999), 183–203 | MR

[34] de la Harpe, Pierre, Pache, Claude, “Spherical designs and finite group representations (some results of E. Bannai)”, Europ. J. Combinatorics, 25:2 (2004), 213–227 | DOI | MR | Zbl

[35] P. de la Harpe, C. Pache, B. Venkov, “Construction of spherical cubature formulas using lattices”, Algebra i analiz, 18:1 (2006), 162–186 | MR

[36] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR