The Dirichlet problem in a domain with a slit
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 208-221
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A basis of harmonic wavelets is constructed in an elliptic ring and its approximation properties are investigated. The obtained results are used to analyze the behavior of a boundary-value Dirichlet problem under the contraction of the inner boundary of the ring to a segment.
Keywords: harmonic wavelets, Dirichlet problem, domain with a slit, asymptotic expansion, approximation error.
@article{TIMM_2009_15_1_a16,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {The {Dirichlet} problem in a~domain with a~slit},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {208--221},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a16/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - The Dirichlet problem in a domain with a slit
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 208
EP  - 221
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a16/
LA  - ru
ID  - TIMM_2009_15_1_a16
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T The Dirichlet problem in a domain with a slit
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 208-221
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a16/
%G ru
%F TIMM_2009_15_1_a16
Yu. N. Subbotin; N. I. Chernykh. The Dirichlet problem in a domain with a slit. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 208-221. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a16/

[1] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya v oblasti s uzkoi schelyu. 1. Dvumernyi sluchai”, Mat. sb., 99(141):4 (1976), 514–537 | MR | Zbl

[2] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya v oblasti s uzkoi schelyu. 2. Oblast s malym otverstiem”, Mat. sb., 103(145):2(6) (1977), 265–284 | MR | Zbl

[3] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968, 575 pp. | MR

[4] Subbotin Yu. N., Chernykh N. I., “Vspleski v prostranstvakh garmonicheskikh funktsii”, Izv. RAN. Ser. mat., 64:1 (2000), 145–174 | MR | Zbl

[5] Subbotin Yu. N., Chernykh N. I., “Garmonicheskie vspleski i asimptotika resheniya zadachi Dirikhle v kruge s malym otverstiem”, Mat. modelirovanie, 14:5 (2002), 17–30 | MR | Zbl

[6] Subbotin Yu. N., Chernykh N. I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. let. mat. shk. S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 129–144

[7] Subbotin Yu. N., Chernykh N. I., “Garmonicheskie vspleski v kraevykh zadachakh”, Tr. Mezhdunar. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, posvyasch. 60-letiyu akad. A. I. Subbotina, T. 1, Izd-vo UrGU, Ekaterinburg, 2006, 38–47