Fundamental groups of spaces of generalized perfect splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 159-165
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The fundamental groups $\pi_1(\Omega_n)$ of the spaces $\Omega_n$ of generalized perfect splines are calculated. For $n\ge2$, the groups are trivial; $\pi_1(\Omega_1)$ is a free group with three generators.
Keywords: generalized perfect splines, fundamental groups.
@article{TIMM_2009_15_1_a12,
     author = {V. A. Koshcheev},
     title = {Fundamental groups of spaces of generalized perfect splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--165},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a12/}
}
TY  - JOUR
AU  - V. A. Koshcheev
TI  - Fundamental groups of spaces of generalized perfect splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 159
EP  - 165
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a12/
LA  - ru
ID  - TIMM_2009_15_1_a12
ER  - 
%0 Journal Article
%A V. A. Koshcheev
%T Fundamental groups of spaces of generalized perfect splines
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 159-165
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a12/
%G ru
%F TIMM_2009_15_1_a12
V. A. Koshcheev. Fundamental groups of spaces of generalized perfect splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 159-165. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a12/

[1] Ruban V. I., “Kletochnaya struktura i kogomologii prostranstv obobschennykh sovershennykh splainov”, Visnik Dnipropetrovskogo universitetu. Matematika, 1999, no. 4, 85–90

[2] Subbotin Yu. N., “Priblizhenie “cplain”-funktsiyami i otsenki poperechnikov”, Tr. MIAN, 109, 1971, 35–60 | MR | Zbl

[3] Babenko V. F., Ruban V. I., “On the non-symmetric widths of classes of periodic functions”, East J. Approx., 2:1 (1995), 119–129 | MR

[4] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989, 494 pp. | MR

[5] Vasilev V. A., Vvedenie v topologiyu, FAZIS, M., 1997, 132 pp. | MR

[6] Postnikov M. M., Lektsii po algebraicheskoi topologii. Teoriya gomotopii kletochnykh prostranstv, Nauka, M., 1985, 335 pp. | MR | Zbl

[7] Postnikov M. M., Lektsii po algebraicheskoi topologii. Osnovy teorii gomotopii, Nauka, M., 1984, 416 pp. | MR | Zbl

[8] Massi U., Stollings Dzh., Algebraicheskaya topologiya. Vvedenie, Mir, M., 1977, 344 pp. | MR | Zbl