2-adic wavelet bases
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 135-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Within the theory of multiresolution analysis, a method of constructing 2-adic wavelet systems that form Riesz bases in $L^2(\mathbb Q_2)$ is developed. An implementation of this method for some infinite family of multiresolution analyses leading to nonorthogonal Riesz bases is presented.
Keywords: 2-adic wavelets, multiresolution analysis, scaling function, Riesz base.
@article{TIMM_2009_15_1_a10,
     author = {S. A. Evdokimov and M. A. Skopina},
     title = {2-adic wavelet bases},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--146},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - M. A. Skopina
TI  - 2-adic wavelet bases
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 135
EP  - 146
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/
LA  - ru
ID  - TIMM_2009_15_1_a10
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A M. A. Skopina
%T 2-adic wavelet bases
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 135-146
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/
%G ru
%F TIMM_2009_15_1_a10
S. A. Evdokimov; M. A. Skopina. 2-adic wavelet bases. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/

[1] Mallat S., “Multiresolution approximation and wavelets”, Trans. Amer. Math. Soc., 315 (1989), 69–88 | DOI | MR

[2] Meyer Y., Ondelettes et fonctions splines, Séminaire EDP, Paris, 1986, 18 pp. | MR

[3] Kozyrev S. V., “Wavelet analysis as a $p$-adic spectral analysis”, Izv. Akad. Nauk. Seria Math., 66:2 (2002), 149–158 | MR | Zbl

[4] Daubechies I., Ten lectures on wavelets, CBMS-NSR Series in Appl. Math., SIAM, Philadelphia, 1992, 357 pp. | MR

[5] Kozyrev S. V., “$p$-Adic pseudodifferential operators and $p$-adic wavelets”, Theor. Math. Physics, 138:3 (2004), 322–332 | DOI | MR

[6] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | MR | Zbl

[7] Khrennikov A. Yu., Shelkovich V. M., $p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators, E-print Archive. URL: , Cornell University Library, 2006 http://arxiv.org/abs/math-ph/0612049

[8] Shelkovich V. M., Skopina M., $p$-Adic Haar multiresolution analysis and pseudo-differential operators, E-print Archive. URL: , Cornell University Library, 2007 http://arxiv.org/abs/0705.2294

[9] Khrennikov A. Yu., Shelkovich V. M., Skopina M., P-Adic refinable functions and MRA-based wavelets, E-print Archive. URL: , Cornell University Library, 2008 http://arxiv.org/abs/0711.2820 | MR

[10] Albeverio S., Evdokimov S., Skopina M., $p$-Adic multiresolution analyses, E-print Archive. URL: , Cornell University Library, 2008 http://arxiv.org/abs/0810.1147

[11] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005, 719 pp. | Zbl

[12] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994, 352 pp. | MR | Zbl

[13] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999, 560 pp. | MR