2-adic wavelet bases
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 135-146

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the theory of multiresolution analysis, a method of constructing 2-adic wavelet systems that form Riesz bases in $L^2(\mathbb Q_2)$ is developed. An implementation of this method for some infinite family of multiresolution analyses leading to nonorthogonal Riesz bases is presented.
Keywords: 2-adic wavelets, multiresolution analysis, scaling function, Riesz base.
@article{TIMM_2009_15_1_a10,
     author = {S. A. Evdokimov and M. A. Skopina},
     title = {2-adic wavelet bases},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - M. A. Skopina
TI  - 2-adic wavelet bases
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 135
EP  - 146
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/
LA  - ru
ID  - TIMM_2009_15_1_a10
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A M. A. Skopina
%T 2-adic wavelet bases
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 135-146
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/
%G ru
%F TIMM_2009_15_1_a10
S. A. Evdokimov; M. A. Skopina. 2-adic wavelet bases. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/