2-adic wavelet bases
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 135-146
Voir la notice de l'article provenant de la source Math-Net.Ru
Within the theory of multiresolution analysis, a method of constructing 2-adic wavelet systems that form Riesz bases in $L^2(\mathbb Q_2)$ is developed. An implementation of this method for some infinite family of multiresolution analyses leading to nonorthogonal Riesz bases is presented.
Keywords:
2-adic wavelets, multiresolution analysis, scaling function, Riesz base.
@article{TIMM_2009_15_1_a10,
author = {S. A. Evdokimov and M. A. Skopina},
title = {2-adic wavelet bases},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {135--146},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/}
}
S. A. Evdokimov; M. A. Skopina. 2-adic wavelet bases. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a10/