@article{TIMM_2009_15_1_a1,
author = {Yu. V. Averboukh},
title = {Differential games with a~given value function},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {15--29},
year = {2009},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a1/}
}
Yu. V. Averboukh. Differential games with a given value function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 15-29. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a1/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[2] Subbotin A. I., Obobschennye resheniya differentsialnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003, 336 pp.
[3] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston, 1997, 570 pp. | MR | Zbl
[4] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 431 pp. | MR
[5] Evans L. K., Gariepi R. F., Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga, Novosibirsk, 2002, 216 pp.
[6] McShane E. J., “Extension of range of function”, Bull. Amer. Math. Soc., 40:12 (1934), 837–842 | DOI | MR
[7] Evans L. C., Souganidis P. E., “Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations”, Ind. Univ. Math. J., 33:5 (1984), 773–797 | DOI | MR