Classification of maximal subgroups of odd index in finite simple classical groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 100-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classification of maximal subgroups of odd index in finite simple classical groups is obtained.
Keywords: finite simple classical group, maximal subgroup, odd index.
@article{TIMM_2008_14_4_a7,
     author = {N. V. Maslova},
     title = {Classification of maximal subgroups of odd index in finite simple classical groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {100--118},
     year = {2008},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a7/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Classification of maximal subgroups of odd index in finite simple classical groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 100
EP  - 118
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a7/
LA  - ru
ID  - TIMM_2008_14_4_a7
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Classification of maximal subgroups of odd index in finite simple classical groups
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 100-118
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a7/
%G ru
%F TIMM_2008_14_4_a7
N. V. Maslova. Classification of maximal subgroups of odd index in finite simple classical groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 100-118. http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a7/

[1] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[2] Liebeck M. W., Saxl J., “The primitive permutation groups of odd degree”, J. London Math. Soc., 31:2 (1985), 250–264 | DOI | MR | Zbl

[3] Kantor W. M., “Primitive permutation groups of odd degree, and an application to the finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl

[4] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge Univ. Press, Cambridge, 1990, 303 pp. | MR

[5] J. H. Conway et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985, 250 pp. | MR | Zbl

[6] Kleidman P., The subgroup structure of some finite simple groups, Ph. D. Thesis, Cambridge Univ., Cambridge, 1986

[7] Thompson J. G., “Hall subgroups of the symmetric groups”, J. Comb. Theory, 1 (1966), 271–279 | DOI | MR | Zbl

[8] Kleidman P., “The maximal subgroup structure of the finite 8-dimensional orthogonal groups $P\Omega_8^+$ and of their automorphism groups”, J. Algebra, 110:1 (1987), 173–242 | DOI | MR | Zbl