Условия трансверсальности ветвей решения нелинейного уравнения в задаче быстродействия с круговой индикатрисой
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 82-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2008_14_4_a6,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {{\CYRU}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya} {\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrv}{\cyre}{\cyrr}{\cyrs}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrv}{\cyre}{\cyrt}{\cyrv}{\cyre}{\cyrishrt} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrn}{\cyre}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrv}~{\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyre} {\cyrb}{\cyrery}{\cyrs}{\cyrt}{\cyrr}{\cyro}{\cyrd}{\cyre}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyri}{\cyrya} {\cyrs}~{\cyrk}{\cyrr}{\cyru}{\cyrg}{\cyro}{\cyrv}{\cyro}{\cyrishrt} {\cyri}{\cyrn}{\cyrd}{\cyri}{\cyrk}{\cyra}{\cyrt}{\cyrr}{\cyri}{\cyrs}{\cyro}{\cyrishrt}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--99},
     year = {2008},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a6/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Условия трансверсальности ветвей решения нелинейного уравнения в задаче быстродействия с круговой индикатрисой
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 82
EP  - 99
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a6/
LA  - ru
ID  - TIMM_2008_14_4_a6
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Условия трансверсальности ветвей решения нелинейного уравнения в задаче быстродействия с круговой индикатрисой
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 82-99
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a6/
%G ru
%F TIMM_2008_14_4_a6
P. D. Lebedev; A. A. Uspenskii. Условия трансверсальности ветвей решения нелинейного уравнения в задаче быстродействия с круговой индикатрисой. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 82-99. http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a6/

[1] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996, 334 pp. | MR

[2] Brus Dzh., Dzhiblin P., Krivye i osobennosti: Geometricheskoe vvedenie v teoriyu osobennostei, Mir, M., 1988, 262 pp. | MR

[3] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[5] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issled., M.–Izhevsk, 2003, 336 pp.

[6] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I”, Mat. sb., 98(140):3(11) (1975), 450–493 | MR | Zbl

[7] Kolokoltsov V. N.,Maslov V. P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296:4 (1987), 796–800 | MR

[8] Slyusarev G. G., Geometricheskaya optika, Izd-vo AN SSSR, M., 1946, 332 pp. | MR

[9] Solimeno O., Krozinyani B., Di Porto P., Difraktsiya i volnovodnoe rasprostranenie opticheskogo izlucheniya, Mir, M., 1989, 662 pp.

[10] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Ser. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR

[11] Papakov G. V., Tarasev A. M., Uspenskii A. A., “Chislennye approksimatsii obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 60:4 (1996), 570–581 | MR | Zbl

[12] Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Konstruirovanie stabilnykh mostov v differentsialnykh igrakh s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 67:5 (2003), 771–783 | MR

[13] Uspenskii A. A., Ushakov V. N., Fomin A. N., $\alpha$-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.04, No 543-V2004, In-t matematiki i mekhaniki UrO RAN, 62 pp.

[14] Uspenskii A. A., Analiticheskie metody vychisleniya mery nevypuklosti ploskikh mnozhestv, Dep. v VINITI 07.02.07, No 104-V2007, In-t matematiki i mekhaniki UrO RAN, 21 pp.

[15] Lebedev P. D., Uspenskii A. A., “Issledovanie geometrii i asimptotiki volnovykh frontov v nekotorykh zadachakh upravleniya”, Tr. IX Mezhdunar. Chetaevskoi konf., T. 5, 2007, 224–236

[16] Rashevskii P. K., Kurs differentsialnoi geometrii, 4-e izd., Editorial-URSS, M., 2003, 432 pp.

[17] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb R^k$”, Singularity Theory and Its Appl., Advanced Studies in Pure Math., 43, 2006, 401–419 | MR | Zbl

[18] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[19] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[20] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, IMM UrO RAN, Ekaterinburg, 2008, 182–191