@article{TIMM_2008_14_4_a2,
author = {Yu. I. Berdyshev},
title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrishrt} {\cyrn}{\cyre}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyre} {\cyrp}{\cyro}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrt}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrs}{\cyrb}{\cyrl}{\cyri}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrs}~{\cyrerev}{\cyrl}{\cyre}{\cyrm}{\cyre}{\cyrn}{\cyrt}{\cyra}{\cyrm}{\cyri} {\cyrp}{\cyrr}{\cyro}{\cyrt}{\cyri}{\cyrv}{\cyro}{\cyrd}{\cyre}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyri}{\cyrya}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {31--42},
year = {2008},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a2/}
}
Yu. I. Berdyshev. Об одной нелинейной задаче последовательного сближения с элементами противодействия. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 31-42. http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a2/
[1] L. S. Pontryagin i dr., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR
[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[4] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 287 pp. | MR
[5] Aizeks R., Differentsialnye igry, Mir, M., 1967, 497 pp. | MR
[6] Dubins L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions fnd tangents”, Amer. J. Math., 79 (1957), 497–516 | DOI | MR | Zbl
[7] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR
[8] Cockayne E., “Plane pursuit with curvature constraints”, SIAM J. Appl. Math., 15:6 (1967), 197–220 | DOI | MR
[9] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–11 | MR
[10] Khamza M. Kh., Kolas I., Rungalder V., “Optimalnye po bystrodeistviyu traektorii poleta v zadache presledovaniya”, Upravlenie kosmicheskimi apparatami i korablyami, Nauka, M., 1971, 410–418
[11] Pesvaradi T., “Optimal horizontal quidance law for Aircraft in the terminal area”, IEEE Trans. Automat. Control, 17:6 (1972), 763–772 | DOI | MR
[12] Berdyshev Yu. I., “Sintez optimalnogo po bystrodeistviyu upravleniya dlya odnoi nelineinoi sistemy chetvertogo poryadka”, Prikl. matematika i mekhanika, 39:6 (1975), 985–994 | MR | Zbl
[13] Chikrii A. A., Kalashnikova S. F., “Presledovanie upravlyaemym ob'ektom gruppy ubegayuschikh”, Kibernetika, 1987, no. 4, 1–8 | MR
[14] Petrosyan L. A., Tomskii G. V., Geometriya prostogo presledovaniya, Nauka, Novosibirsk, 1983, 143 pp. | MR
[15] Ivanov M. N., Maslov E. P., “O sravnenii dvukh metodov presledovaniya v zadache o poocherednoi vstreche”, Avtomatika i telemekhanika, 1983, no. 7, 38–43 | Zbl
[16] Berdyshev Yu. I., “Ob odnoi zadache posledovatelnogo sblizheniya nelineinoi upravlyaemoi sistemy tretego poryadka s gruppoi dvizhuschikhsya tochek”, Prikl. matematika i mekhanika, 66:5 (2002), 742–752 | MR | Zbl
[17] Berdyshev Yu. I., “O zadache obkhoda nelineinoi upravlyaemoi sistemoi tretego poryadka dvukh tochek”, Izv. Ural. gos. un-ta, 2003, no. 26, 24–33, Ser. Matematika i mekhanika. Vyp. 5 | MR
[18] Berdyshev Yu. I., “O zadache posledovatelnogo obkhoda odnim nelineinym ob'ektom dvukh dvizhuschikhsya tochek”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 1, 2005, 43–52 | MR
[19] Berdyshev Yu. I., “O postroenii oblasti dostizhimosti v odnoi nelineinoi zadache”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 4, 22–26 | MR
[20] Berdyshev Yu. I., “Ob odnoi nelineinoi zadache posledovatelnogo upravleniya s parametrom”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 38–43 | MR